
On the Development of Software
Product Family Components

Jan Bosch

University of Groningen, Department of Computing Science,
PO Box 800, 9700 AV Groningen, The Netherlands.

Jan.Bosch@cs.rug.nl, http://segroup.cs.rug.nl

Several approaches to the development of shared artefacts in software product
families exist. Each of these has advantages and disadvantages, but there is no
clear framework for selecting among these alternatives. As a consequence,
mismatches between the optimal approach and the one currently used by an
organization may lead to several problems, such as a high degree of erosion,
mismatches between product needs and shared components, organizational
“noise” and inefficient knowledge management. This paper presents (1) the
problems resulting from the aforementioned mismatch, (2) presents the relevant
decision dimensions that define the space of alternatives, (3) discusses the
advantages and disadvantages of each alternative and (4) presents a framework
for selecting the best alternative for each decision dimension based on a three
stage adoption model.

1. Introduction

Software product families have achieved a broad recognition in the software industry.
Many organizations either have adopted or are considering to adopt the technology.
One of the key items in software product families is the development, evolution and
use of shared components. Being able to develop a component once and use it in
several products or systems is, obviously, one of the main benefits to be achieved.

The sharing of components among multiple systems is a great concept in theory
and has been quite successful in the context of inter-organizational reuse. Modern
operating systems, database management systems, graphical user interfaces,
component infrastructures, web servers, web browsers, etc. offer a rich infrastructure
based on which products can be quickly and easily developed. Intra-organizational
reuse of components, i.e. software product families, on the other hand, has
experienced considerably more problems in achieving a high degree of component
sharing. In many organizations, achieving effective and efficient reuse of product
family components proofs, in many cases, to be not trivial at all.

In the literature, e.g. [Weiss & Lai 99] and [Clements & Northrop 01], as well as in
our own publications, e.g. [Bosch 00], reasoning around the scoping of a shared
software artefact in a product family is typically organized around the amount of
sharing of features by the customers of the component team developing the shared
component. However, although this provides an overview of the scoping of product

2 Jan Bosch

family components, it leaves many details to be implemented by the organization
adopting software product families.

In our experience from several industrial cases, several decisions need to be taken
about the scoping of product family artefacts, the way to organize for the
development and evolution of these artefacts, the funding model used to finance the
development of shared components, the features that are selected for implementation
in shared components as well as the amount of architecture harmonisation required.
However, these decisions are often taken implicitly rather than explicitly based on
clearly stated objectives. The consequence is that the organization may experience a
mismatch between the employed and the optimal approach. This may result in several
problems, such as a high degree of erosion, mismatches between product needs and
shared components, organizational “noise” and inefficient knowledge management.

The contribution of this paper is that we present a framework for deciding the
optimal model for organizing the development of shared components. In particular,
we present the dimensions that define the space of approaches and discuss the
advantages and disadvantages. Subsequently, we present a framework for selecting
the best alternative for each decision based on a three-stage adoption model. Although
the paper is based on extensive industrial experience, we are unable to present any
case studies due confidentiality and the lack of time for obtaining approval for
publication.

The remainder of the paper is organized as follows. In the next section, we present
the problems that an organization may experience when a mismatch between the
chosen and optimal approach to the development of shared artefacts is chosen.
Subsequently, in section 3 we discuss the dimensions for which the organization
needs to take decisions when developing shared software artefacts. Section 4 presents
the three stages of product family adoption and the decision framework for the
development of shared components associated with each stage. Section 5 discusses
related work and the paper is concluded in section 6.

2. Problem Statement

The key benefit of software product families results from the ability to share the
implementation of components over multiple products, resulting in overall lower
development and maintenance cost. Achieving these benefits in practice, however,
proofs to be quite a challenge. Our claim in this paper is that this is, among others,
caused by the mismatch between the approach used for the development of shared
artefacts and the optimal approach. If such a mismatch is present, an organization may
experience several problems. From the cases that we have been involved in, a
common denominator for all mismatches is a shared perception among the R&D staff
that “it doesn’t feel right”. This feeling is due to the staff experiencing too many
mismatches between different roles in the organization in the process of product
family centric software engineering. Below, we discuss the problems that, in our
experience, are the most predominant.
• Mismatch between shared components and product needs: The first problem

that an R&D organization may experience is that the staff experiences a mismatch

On the Development of Software Product Family Components 3

between the product requirements and the behaviour provide by the shared
component. This mismatch may be of architectural nature, due to differences in
assumptions about the architectural context in which the component operates. The
mismatch may be concerned with interfaces provided and required by the shared
component. A third reason may be concerned with the quality attributes provided
by the shared component. Finally, the mismatch may be in time, i.e. between the
roadmap and release schedule of the shared components and the product.

• Design erosion of shared components: Due to schedule or other pressures on the
shared components, initial development or evolution of the shared component may
be performed without sufficiently considering all aspects of the design, resulting in
a high degree of design erosion. The design may be extended with too product
specific functionality, additions are not sufficiently integrated in the original design
or variability requirements need to be integrated that have a cross-cutting effect.
The high level of design erosion increases the maintenance cost, complicates
component integration in products and causes early retirement of the component.

• Complex interface: Delivering a component that is to be extended with product
specific code, which is one approach to developing shared components, requires
the availability of some kind of interface to the internals of the component.
Although ideally this interface is clean and reveals minimal details of the internals
of the component, in practice this is very difficult to achieve in the case where the
component is extended with product specific features. This is, among others, due to
the fact that features tend to be cross-cutting in nature with respect to the basic
elements of software development.

• High degree of “organizational noise”: During an adoption process, many staff
members are affected in their role and responsibilities. The organization has to
learn to operate in the new role, but this is generally not achieved without
problems. These problems lead to a certain amount of “organizational noise”, i.e.
complaints and discussions, especially in the informal organization. A limited
amount of organizational noise over a limited amount of time during the early
phases of adoption is normal, but if there is much “noise” over an extended period,
this is a clear indicator that the approach towards the development and evolution of
shared components does not fulfil the organization’s needs. This may result in
problems associated with productivity and predictability of schedule, but also
affects softer factors, such as motivation, team spirit and the momentum for the
product family initiative.

• Inefficient knowledge management: In the case where a shared component is
delivered to several products where most product teams need to extend the
component with features specific to their product, this means that, in addition to
the staff in the component team, at least one person in each product team needs to
maintain a sufficient, typically high, level of understanding with respect to the
internals of the component. The cost of maintaining this level of expertise is an
often underestimated factor and detriments the benefits of the product family
approach.

• Evolution causes ripple effects through the R&D organization: As all software,
also the shared component will evolve with, typically, a certain heartbeat. Whereas
it often is feasible to maintain the existing provided interface, experience shows
that it often is more difficult to maintain the extension interface. This means that

4 Jan Bosch

for most new releases, all product engineering units that extend the component
need to re-evaluate and evolve their extensions in order to work with the new
interface. Depending on the complexity of the changes, this may be quite effort
consuming. In addition, the amount of effort required is often difficult to predict
before the component is available, creating difficulty in the planning of software
development in the unit.

• Component value not linear: An assumption rather wide-spread in the software
industry is that a shared component that fulfils X% of the features required from it
in a product context also represents X% of the value of a product-specific
component. Based on our experience, we conclude that this relation is not linear,
but rather exponential. Due to the problems discussed above, the value of a shared
component increases exponentially with its support of product specific
requirements. In the figure below, this is illustrated graphically. The figure also
shows that a component that satisfies substantially more than the product requires
also is less valuable, due to higher resource demands and more complex interfaces.

100%
product-specific

requirements covered

component value

100%

actual
relation

reduced value due
to inefficiencies

as
su

med
 re

lati
on

 Figure 1. Relation between component value and support for product specific requirements

3. Decision Dimensions for Shared Component Development

Organizations adopting or employing software product families need to decide what
shared component to develop, how to organize their development and in what order
the components should be developed. As we discussed earlier in the paper, these
decisions are often taken in a implicit manner, as the organization has, at the point in
time when these decisions need to be made, little experience in the domain during
adoption. The consequence, however, is that the development approach adopted may

On the Development of Software Product Family Components 5

be different from the approach that would be optimal for the organization, resulting in
mismatches and associated problems as discussed in the previous section.

In this section, we present five decision dimensions that we, based on our industrial
experiences, consider to represent the most important decisions that an organization
should take. These dimensions are feature selection, architecture harmonisation, R&D
organization, funding model and shared component scoping. Each dimension presents
a number of alternatives and discusses the advantages and disadvantages of each of
these. The dimensions are not fully orthogonal and can, as discussed in the rest of the
section, not be combined arbitrarily. In the next section, we discuss the three stages of
product family adoption and the typical approach associated with each stage.

Finally, we use the terms “component team” to identify a group that is responsible
for the development of a shared (or product family) component. However, a
component team is not necessarily an organizational unit. A component team may be
part of a product unit or even a virtual team consisting of members located at different
product units. The term “unit” does refer to an organizational entity.

Feature selection

An important decision that must be taken early in the adoption of a software product
family approach is what features and functionality to first move from the product
specific to the product family realm. As discussed in [Geppert & Weiss 2003],
especially the first components typically require a careful balance between the
greatest perceived benefit and the highest chance of success. One can identify three
approaches to selecting the first product family components.

Oldest, most generic, lowest components
The first approach is to start from the easiest components, maximizing the chance of
success. These are typically the oldest, most generic components, often located in the
lower layers of the product software architectures. The product teams often
experience these components as necessary, but not relevant from a competitive
perspective. Consequently, there is typically little resistance to move to a model
where these components become shared among the products.

Advantages. As mentioned, there is typically little resistance against share these
components. Also, the variability required from the shared component is well
understood. In the case of multiple, evolving infrastructures that need to be supported,
there can be a real benefit from having to evolve only one shared version of the
component rather than multiple product specific ones.

Disadvantages. The product-specific component versions typically have existed for
a long time and are often rather eroded. Consequently, the investment required for
integrating the product-specific versions into one shared version may be substantial,
whereas the benefit, in terms of reduced development effort, often is limited. Finally,
COTS components may be or become available, removing the need for an internal
component version.

6 Jan Bosch

Existing, but evolving, components
As a second starting point for the selection of components, one can focus on the
product-specific components that have a relatively high change rate. Typically, these
components implement features that are part of the competitive advantage of the
products, but due to the quick evolution, there substantial maintenance cost are
associated with these components.

Advantages. Assuming the changes are orthogonal to the product portfolio, a
substantial reduction in maintenance cost can be achieved by merging the product
specific components into one shared version. In addition, the required behaviour,
although it is evolving, is understood reasonably well, simplifying the effort required.

Disadvantages. The main disadvantage is, obviously, first several product-specific
versions of a component were developed that after a relatively short time are merged
into a shared component, with the associated effort requirements. In addition, in the
case that the evolution of the component is rather product-specific, the effort required
for maintaining the shared component implementing the superset of features may be
easily underestimated.

New, but common features
Finally, one may aim to develop shared components that implement currently
unavailable functionality that is present on all or most product roadmaps. Rather than
being reactive, the product family effort is proactive, developing shared components
before the products need them.

Advantages. The main advantage over the first two alternatives is that no product-
specific versions of the component are developed, so none have to be replaced. This
reduces the development as well as the maintenance effort required for the new
features.

Disadvantages. The concern one may have is that the product family R&D staff
has to predict future requirements that the products themselves, being close to their
markets, have not yet started to implement. There is, consequently, a high degree of
uncertainty. This may cause certain investments to be invalidated, due to changing
requirements.

Architecture harmonisation

The second dimension that we discuss is the level of software architecture
harmonisation between the products that the organization strives for. In the case
where a customer may use multiple products from the portfolio, harmonization of user
interfaces as well as integration of product functionality, e.g. access to data stored in
one product from the other product, is of considerable market value. In addition, the
integration of shared components is considerably easier if the architectures are
similar. On the other hand, products that, up to now, have evolved independently may
require substantial effort in order to achieve architectural harmonization and the
benefits may be limited.

On the Development of Software Product Family Components 7

Component-centric
The first model that the organization may decide to use is to forego all architecture
harmonisation and to only develop shared components. As the integration of these
components in the products will be more effort consuming, the organization needs to
find a balance between the responsibilities of the component team versus the product
teams with respect to facilitating and achieving component integration.

Advantages. The obvious advantage is that no effort has to be invested in
architecture harmonisation. Secondly, the product teams maintain their relative
freedom and are not required to achieve consensus over architectural issues.

Disadvantages. The component integration cost per product is often relatively
high, reducing the benefits of a software product family approach. This may lead to
organizational tension between the component team and the product teams. The
product teams may demand from the component team to better prepare their
component for integration in the products. The component team is concerned with the
effort associated with preparing the component for inclusion in each product and
generally not inclined to give in to the demands of the product unit.

Iterative product architecture harmonisation
For most organizations that adopt software product family engineering, there is a
benefit associated with harmonisation of the product architectures. However, the cost
of achieving this harmonisation is so high that it cannot be achieved in one release
cycle. Instead, a roadmap is defined and architecture harmonisation is pursued in an
iterative fashion, taking the process one step forward with every release cycle.
Prerequisite for this approach is a reference product family architecture that is used as
a (long-term) goal. This reference architecture needs to be designed jointly by the
product and component teams.

Advantages. The main benefit of this approach is that, by starting with the
architecture harmonisation of the product around the location of the shared
components, the component integration cost can be reduced.

Disadvantages. There are some drawbacks with this approach as well. First, there
is a need for product teams to invest in product architecture harmonisation, which has
no immediate return on investment. Second, the product teams must agree on a
reference architecture, which often is a lengthy and effort consuming process.

Revolutionary architecture adoption
In earlier work, we have described the revolutionary adoption model. In this case, a
product family architecture and set of shared components is developed. Products that
aim to use these shared components need to perform all architecture harmonisation at
once without the ability to spread it out over multiple release cycles. On the other
hand, once the harmonisation is achieved, integration of shared components is trivial.

Advantages. The main advantage is the ease of integrating shared components,
once the architecture harmonisation has been achieved. Also integration of multiple
products at customer sites and user interface harmonisation is greatly simplified.

Disadvantages. The effort associated with performing all architecture
harmonisation in one release cycle typically leaves little effort for adding new

8 Jan Bosch

features, potentially reducing the competitive advantage that the products have in the
market.

R&D Organization

The third decision dimension is concerned with the organization of the R&D staff
involved in the development of shared components. Again, we have three alternative
models that we discuss.

Mixed responsibility for product teams
The first model, not requiring any changes to the formal R&D organization, is where
product teams assume responsibility for developing one or more shared components
in addition to evolving the product or products in their portfolio. There are two
alternative approaches. A product team may evolve a shared component with
functionality needed for one of their products, releasing a new version of the shared
component that can, at later stage, be extended with other functionality by another
product team. Alternatively, a product team may have permanent responsibility for a
shared component and extend it with new functionality in response to requests from
other product teams.

Advantages. Simplicity is one of the key advantages; no organizational changes,
which often require support from management, are required. In addition, there is no
risk of shared components being extended with functionality that has no immediate
market benefit.

Disadvantages. An important disadvantage is that, in this model, shared
components often suffer from a high degree of design erosion. Product teams often
have a tendency to add too product specific functionality to a shared component. In
the case of permanent component responsibility, a product team has to balance
requests from other product teams against its own release schedule demands.

Virtual component team
Especially in the case of replacing existing, product-specific components with one
shared component, the organization use a virtual component team. The members of
this team originate from the involved product groups and remain formally part of the
product groups. However, as part of the virtual component team, the members
develop the shared version of the component.

Advantages. The members of the virtual team have, due to their experience in the
product teams, a good understanding of the product requirements on the component.
Also, this approach requires no changes to the formal R&D organization.

Disadvantages. The members of the team often feel split in loyalty between the
product and component team that they belong to.

Component unit
When a first release of a shared component, or a set of components, is available, it
frequently becomes necessary to create an explicit component unit that has

On the Development of Software Product Family Components 9

responsibility for the component(s). In the case of a virtual component team, the team
may even be converted into a unit.

Advantages. The responsibilities in the organization are clearly delineated and the
places where trade-offs need to be made align with the boundaries in the R&D
organization.

Disadvantages. The main disadvantage is that a component team has a clear risk of
focussing more on its own goals than on the goals of the product teams, especially in
the time dimension. There is a tendency in component teams to build a “perfect”
component, rather than satisfying the immediate needs of the product teams.

Funding

In all commercial organizations, the final metric is “the bottom line”, i.e. the financial
consequences of decisions. Adopting product families is no different in this respect.
As the profit and loss responsibility in many organizations even exists at product team
level, the development and evolution of shared components requires a suitable
funding model. Below, we discuss three models for funding product family initiatives
that are used in the software industry.

“Barter”
In organizations that use this model, the effort that is invested is not quantified in
terms of effort or value. Instead, different product teams agree to develop shared
components and to provide the components to the other product teams. Negotiations
are based on a form of equal sharing of the development and evolution effort and on
trust concerning the ability and willingness of the other teams to deliver their
contributions in time and according to specifications.

Advantages. The main advantages are that this model requires no changes to the
budget or the organization, lacks any bureaucratic overhead and can be initiated easily
by a few enthusiastic people at the right places in the R&D organization.

Disadvantages. The hand-shake deals that are associated with this model require a
high level of trust in the organization. One product team may run into delays in an
ongoing project, causing delays in the delivery of shared components. Unforeseen
events may easily put pressure on the agreements causing the initiative to fail.

Taxation
The second model is where product teams agree on a form of taxation where each
product team, based on size, profit and expected use of the shared components, agrees
to contribute development effort or financial support. The taxation may be
implemented through the initiation of a separate component team or by product team
itself committing to the development some shared component. This model is basically
an investment model and is more formal than the “barter” model, i.e. the investment is
quantified and delivery schedules agreed upon.

Advantages. The model provides a more formal agreement, increasing the level of
trust towards the initiative. Also, it becomes feasible to develop explicit roadmaps and
release plans based on the available investments.

10 Jan Bosch

Disadvantages. The investment in product family engineering becomes explicit in
the budget and, in the case of a component team, in the organizational structure. Also,
especially in the case where a taxation-based component team exists for a number of
years, there is often a tendency to developing “perfect” components rather than
helping product teams addressing their immediate concerns due to lacking market
pressures.

Licensing/royalty
Once a usable version of a shared component is available, it becomes feasible to move
to a royalty or licensing model. In this case, the component team is not funded
through taxation but through the royalties that it receives based on product sales of
products that contain the shared component. The component team may be in direct
competition with other component teams in the organization or with external COTS
components and consequently under substantial market pressure. Also, in the case of
too high royalties, product teams may decide to develop the component themselves.

Advantages. This model provides the market pressures for the component team that
are necessary to keep it focused on satisfying customers and on innovating and
evolving their components. Also, once the team is unable to fund itself based on its
royalties because lower priced COTS components have become available, it provides
a natural way to dissolve the component team and to assign its members to other
tasks.

Disadvantages. The model should not be applied until the shared component has
achieved a level of maturity that allows the component team with a realistic budget
for component evolution and innovation. In the case it is decided that the shared
component represents core competences that the organization should maintain, this
model is not appropriate as the market pressure is lacking.

Shared component scoping

The final decision dimension that we discuss in this paper is the scoping of the shared
component. Of the features required by the products that use the shared component,
the component can implement only the most common ones, the subset used by some
or more products or all features, including those required by only one product.

Only common features
The starting point for most shared components is to implement only those features
that are common for all products. The product teams have to extend the component
with the features that their product needs.

Advantages. Assuming the common features represent a substantial subset of the
features, this approach provides an efficient way to achieve early successes in the
product family adoption.

Disadvantages. One concern with this approach is the often complex interface
between the shared component and the product specific functionality that has to be
developed on top of it. In addition, all product teams have to maintain staff with

On the Development of Software Product Family Components 11

knowledge of this interface, and often the component internals, resulting in inefficient
knowledge management.

Complete component with plug-in capability
Over time, a shared component evolves by incorporating more and more features until
the point is reached where only features required by only one or two products need to
be added to the component. For this, the component provides a plug-in interface.

Advantages. This model resolves, to a large extent, the issues identified for the
previous model concerning the complex interface and the inefficient knowledge
management.

Disadvantages. The main concern often is the integration of the component in the
product. Depending on the complexity of the interaction between the component and
the remaining product, the integration may be a substantial challenge.

Encompassing component
The final model is where the component team aims to incorporate all product needs
for the component in the component itself. In addition, the component team may take
responsibility for (part of) the integration of the component in the products of their
customers.

Advantages. Especially in the case where the component has a complex, e.g. real-
time, interface with the rest of the product, this model is the most efficient as the
component team has a better understanding of the behavioural characteristics of the
component.

Disadvantages. The component team will typically need to be larger than in the
earlier models, due to the service that it provides to the product teams. This may
easily be viewed as inefficient by the organization.

Summary

As we discussed in the introduction to this section, organizations adopting or
employing software product families need to decide what shared component to
develop, how to organize their development and in what order the components should
be developed. Due to the implicit manner these decisions typically are taken,
organizations often experience problems due to mismatches between the actual and
optimal model used.

We have presented five decision dimensions that, based on our industrial
experiences, we consider to represent the most important decisions that an
organization should take. These dimensions are feature selection, architecture
harmonisation, R&D organization, funding model and shared component scoping. In
the figure below, these dimensions as well as the alternatives on each dimension are
presented graphically.

12 Jan Bosch

feature
selection

new common
features

existing, evolving
components

old, generic
components

architecture
harmonisation

component
centric

iterative
harmonisation

revolutionary
adoption

organization

mixed
responsibility

virtual
team

component
unit

funding

"barter"

taxation

licensing/
royalty

shared
component

scoping

only
common
featurescomponent

with plug-in

encompassing
component

Figure 2. Five decision dimensions and associated alternatives

4. Decision Framework

When implemented successfully, software product families provide substantial
benefits to the organization in terms of development effort, time-to-market of new
features and products and the level of integration of the product portfolio. However,
in order to achieve these benefits, the organization first has to adopt the product
family approach, which is a major change process in the organization, primarily
affecting the R&D organization, but also product management, marketing and other
groups in the organization.

The adoption of a product family approach is primarily a business, organization
and process challenge and the technical challenges are, although present, not of
predominant importance. Because of the breadth of the challenge, it is important,
especially early in the adoption, to select the starting point that provides maximal
benefit to the organization, but also has a high likelihood of success. Based on this,
one can identify three stages that product family adoption typically evolves through,
i.e. the early success phase, the expanding scope phase and the increasing “maturity”
phase. Once the last stage is reached, product family engineering has been embedded
as the normal way of working in the organization. The business strategy of the
organization then influences the evolution of the product family.

On the Development of Software Product Family Components 13

In the sections below, we discuss, for each of the decision dimensions, the
alternatives that in the typical case are the preferred ones. Specific organizations may
deviate from these for legitimate reasons.

Initial Adoption - Early successes

The first stage that organizations adopting software product families go through is the
initial adoption. During this stage the first steps are made away from independent
product teams. Although the R&D organization may have a positive attitude towards
the overall initiative, the complete adoption process will initiate many changes and,
especially, increase the dependencies between different R&D teams. Because of this,
it is important to minimize the number of impact of the required changes, to maximize
the chance of success and to maximize the benefits from the success. The principles
that should guide the initial adoption are:
• Assign a champion or adoption team that champions the approach.
• Avoid organizational changes.
• Minimize the product family specific processes to a bare bone set.
• Select features that create maximal visibility and benefit.
• Failure is not an option – if the initiative fails to deliver in this stage, its

termination is guaranteed.
The initial adoption phase ends with the successful integration of one or more shared
components in at least two products. At this point, the product family initiative has,
hopefully, achieved its first successes and there is hard evidence that the benefits of
product family engineering can be achieved in the context of the organization.

In the sections below, we discuss, for each decision dimension, the preferred
alternative as well as the situations in which an organization should deviate from it.

Feature selection: new, but common features
The preferred alternative for the features to be implemented as a product family are
those that have not yet been implemented by the existing products, but are needed by
at least one or two products in the next release.

There are cases where the products service fundamentally different markets,
leading to a lack of common new features. In this case, existing product specific
components with a high change rate where the changes are preferably cross-cutting
the product portfolio are a suitable alternative.

Architecture harmonisation: component-centric
R&D organizations are typically hesitant to invest in changes that have no obvious,
short-term return on investment. Although harmonisation of the product architectures
is of importance in the long term, due to the reduced integration effort, it is also an
effort-consuming activity with no immediate pay-back. Consequently, at this stage in
the adoption process, effort should be directed towards creating product family
components.

14 Jan Bosch

Organization: mixed responsibility for product teams
It is difficult to present a general preference for this dimension as it is preferable to
have a component team developing the first product family components. However,
obtaining the management support for creating a component team is typically
difficult, due to the scarceness of R&D resources. The main risk of the recommended
alternative is, obviously, the prioritization by the product teams. The aim should be to
assign the responsibility for component development to product teams that have an
immediate need for incorporation of the product family components in their product.

Funding: “barter”
Similar to the decisions dimensions already discussed, the main challenge is to
achieve the early successes with minimal changes. In the case where different product
teams decide to share responsibility for the development of shared components, it is
preferable to initially achieve agreement based on estimations that can be made part
of the normal product development budgets. If substantial organizational support is
available, a taxation model can be considered.

Shared component scoping: only common features
Assuming product teams have shared responsibility for components and products, the
least intrusive approach is to have product teams implement the features needed by
their own product, leaving extension points for likely future extensions. The next
product team that requires use of the product can extend the first version of the shared
component with its requirements. The main challenge in this model is one of
discipline, i.e. each product team is responsible for maintaining the general
applicability of the shared component.

Expanding scope

Once the first product family components have been successfully integrated in two or
more products and the R&D organization is experiencing the benefits of product
family engineering, the product family initiative evolves to the second phase. The
second phase is concerned with expanding the scope of the product family in terms
functionality that is in the product family domain. R&D teams have grown
accustomed to the additional dependencies and learned to trust other teams to an
extent. The situation is becoming more complicated in that product family artefacts
developed in the first phase need maintenance and an organizational model for this
has to be established. In short, after the initial rather ad-hoc, but efficient, adoption
phase, now more structure is needed to institutionalize the product family approach.
The principles that guide the second phase are addressing this need:
• Preferably each product team should contain a product family champion.
• Some organizational change is necessary to embed product family engineering in

the R&D organization.
• Introduce product family processes that safeguard the reliability of the shared

components as well as their predictable evolution.

On the Development of Software Product Family Components 15

The second adoption phase ends at the point when no obvious extensions to the
shared components can be identified by the R&D organization. At that point, the
challenge shifts to increasing the “maturity” [Bosch 02] of the product family
artefacts as a means to decrease the product derivation cost.

In the sections below, we discuss, for each decision dimension, the preferred
alternative as well as the situations in which an organization should deviate from it.

Feature selection: existing, but evolving, components
Assuming the product family components for new, common features have already
been developed in the first phase, the next step is to address the components that
currently have product-specific implementations, but share common features. In
particular, the components that experience a high chance rate in response to new
requirements, that preferably are orthogonal to the product portfolio, are of interest.
Frequently, these components are considered to be problematic within product teams,
creating momentum for moving to a shared implementation. The second phase marks,
in this sense, a shift from reducing development effort to reducing maintenance effort.

Obviously, if opportunities exist for the development of shared components for
new, common features, these should be pursued as well.

Architecture harmonisation: iterative product architecture harmonisation
With the increasing number of shared components, the cost of integrating these
components in the product architecture often starts to become a concern. This calls for
the design of a product family architecture that captures the commonality and
variability of the products in the product family scope. The product teams use this
architecture as a reference and aim to iteratively harmonize the product architecture
with the product family architecture.

Organization: virtual component team
The shared components developed in the first phase need to be maintained. In
addition, the shared components created in this phase are mined based the product-
specific implementations of these components. This requires, on the one hand, a team
of people that is permanently assigned to a set of components. On the other hand, the
team needs detailed knowledge of the product specific requirements. A virtual team,
consisting of staff formally located at the product teams, provides an optimal balance
between these concerns.

Funding: taxation
The effort required for the product family initiative as well as the importance of
continuity of the members of the virtual component demand a strong commitment
from the R&D organization. Informal agreements about development need to be
replaced with a more formalized model that guarantees more continuity. The taxation
model requires all units and teams, during the budget rounds, to reserve part of their
resources for the product family initiative.

16 Jan Bosch

Shared component scoping: complete components with plug-in capability
The shared components replacing their product-specific counterparts should,
preferably, be as easy to integrate as the original components. Consequently, it is
necessary for these components to cover most of the features required by the products
only requiring plug-ins for the features that are used by only one product.

Increasing “maturity”

Once the obvious product family components have been developed and the second
phase of product family adoption has ended, the main challenge becomes to increase
the “maturity” of the product family artefacts. In [Bosch 02], we present five maturity
levels for product families:
• Independent products: Initially, the organization develops multiple products as

several independent entities. These products do not share software artefacts in any
planned way, only by coincidence.

• Standardized infrastructure: The first step towards sharing is when the
organization decides to standardize the infrastructure based on which a set of
products is built.

• Platform: A subsequent development is to extend the standardized infrastructure
with internally developed software artefacts, i.e. a platform, that provide
functionality that is common to all products in the scope. Each product is
developed on top of the platform.

• Software product family: The fourth level of maturity is when the organization
employs a software product family in the traditional sense of the term [Bosch00].
The shared artefacts in the product family contain functionality that is shared by all
or a subset of the products. Products may sacrifice efficiency or other requirements
for the benefits of being member of the product family.

• Configurable product base: The final level is the situation where the differences
between the different products are so well understood that these can be mapped to
variation points that can be bound at installation or run-time. As a consequence,
individual products are derived by configuring the shared software artefacts
appropriately.

The challenge in this phase is to lift the product family from the platform level at
which it typically is after the second adoption phase to the product family and, if
feasible, the configurable product base level.

In the sections below, we discuss, for each decision dimension, the preferred
alternative as well as the situations in which an organization should deviate from it.

Feature selection: all components
With the ambition to bring all products in a configurable product base, the scope for
feature selection is now extended to all components, including the old, common and
low-level components. Of course, for all components considered for inclusion in the
product family, a positive cost benefit evaluation should be available. The ultimate
goal remains to reduce development and maintenance effort, improve time-to-market
and increase integration between different products in the portfolio.

On the Development of Software Product Family Components 17

Architecture harmonisation: revolutionary architecture adoption
At this stage in the product family adoption, the products that were part of the initial
adoption have evolved through several iterations of architecture harmonisation.
However, new products interested in joining the product family initiative need to go
through a revolutionary architecture adoption process. Reusing the product family
components will require the new products to make substantial changes to their
architecture.

Organization: component unit
Even if up to now, no component units were created, the product family is, at this
point, so embedded in the R&D organization that it is no longer feasible to proceed
without component units. However, as discussed below, after initial taxation based
funding, these component units should be funding through licensing or royalty fees.
The aim is to make sure that component units are exposed to market pressures from
within and outside the organization.

Funding: licensing/royalty
As discussed, as the R&D organization instantiates component units, it is important
for these units to be exposed to market pressures. A taxation based model easily leads
to component units that are more concerned with creating a ‘perfect’ component than
with the needs of their customers.

Shared component scoping: encompassing component
A logical consequence of the customer focus of component units is the attention
towards minimizing the integration problems of the component in specific products.
In this stage one can typically identify a shift from shared components extended by
product teams to shared components prepared by component units for easy
integration, i.e. the encompassing component model.

5. Related Work

Several authors have discussed the different aspects concerning the adoption and
institutionalisation of software product families. [Weiss & Lai 99] present an
approach to product family engineering that aims to achieve generation of products
from the product family artefacts. Although we agree with the authors that automated
generation is the long term goal for most product families, the focus of this paper is
on the early phases of adoption.

[Clements & Northrop 01] presents 29 practice areas that can or should be
addressed for software product family engineering. Launching and institutionalizing
is discussed as one practice area and some of the issues discussed in this paper are
also addressed. Different from these authors, we present the five decisions dimensions
and present a three-stage adoption process.

18 Jan Bosch

[Böckle et al. 02] discuss the importance of adopting and institutionalizing a
product family culture. Some aspects, such as the adoption approach, that are
discussed have relations to this paper, but are presented much more brief. Also,
[Wijnstra 02] discusses the importance of the ‘weight’ of introduction and supports
our approach of limiting up-front investments and iteratively extending scope and
maturity.

[Kang et al. 02] discuss the use of marketing and product plans to select and drive
the development of product family components. The work discussed in that paper
would provides valuable input to the feature selection during product family adoption.
Other others discussing the process of scoping and roadmapping include [Ommering
01], [Schmid 02] and [Kishi et al. 02].

6. Conclusion

Once adopted successfully, software product families provide a considerable benefit
for software R&D organizations. However, achieving the successful adoption proves,
in many organizations, to be non-trivial. Our claim is that this is due to the mismatch
between the optimal and applied approach to the development, evolution and use of
shared product family artefacts. The mismatch may lead to several problems, such as
the mismatch between shared components and product needs, high level of design
erosion and complex interfaces of shared components, high degree of “organizational
noise”, inefficient knowledge management, ripple effects through the R&D
organization due to component evolution and incorrect assumptions about the value of
shared components.

To address these problems, we have presented five decision dimensions that are of
relevance to the development of shared components, i.e. feature selection, architecture
harmonisation, R&D organization, funding model and shared component scoping. For
each dimension, we have presented three alternatives.

These dimensions are used in a decision framework that describes the preferred
alternative for each stage in the adoption of software product families. We recognize
three main stages in product family adoption, i.e. early successes, increasing scope
and increasing maturity. In the table below, the stages and the preferred alternatives
are presented.
 Early successes Increasing scope Increasing

maturity
Feature selection New, but common

features
Existing, but
evolving,
components

All components

Architecture
harmonisation

Component-centric Iterative product
architecture
harmonisation

Revolutionary
architecture
adoption

R&D
organization

Mixed
responsibility for
product teams

Virtual component
teams

Component units

Funding “Barter” Taxation Licensing

On the Development of Software Product Family Components 19

Shared
component
scoping

Only common
features

Complete
components with
plug-ins

Encompassing
component

The contribution of this paper is that we present a framework for deciding the optimal
model for organizing the development of shared components. In future work, we
intend to add more detail to the model in terms of advantages, disadvantages and
risks. In addition, we hope to add a number of industrial cases to the presentation of
the decision framework to further illustrate and validate the decision framework.

References

[Bosch 00] J. Bosch, 2000. Design and Use of Software Architectures: Adopting and Evolving
a Product Line Approach, Pearson Education (Addison-Wesley & ACM Press), ISBN 0-
201-67494-7.

[Bosch 02] J. Bosch, Maturity and Evolution in Software Product Lines: Approaches, Artefacts
and Organization, Proceedings of the Second Conference Software Product Line Conference
(SPLC2), pp. 257-271, August 2002.

[Böckle et al. 02] G. Böckle, J. Bermejo Muñoz, P. Knauber, C.W. Krueger, J.C. Sampaio do
Prado Leite, F. van der Linden, L. Northrop, M. Start, D.M. Weiss, Adopting and
Institutionalizing a Product Line Culture, Proceedings SPLC2, pp. 49-59, LNCS 2379, 2002.

[Clements & Northrop 01] P. Clements, L. Northrop, 2001. Software Product Lines: Practices
and Patterns, SEI Series in Software Engineering, Addison-Wesley, ISBN: 0-201-70332-7.

[Geppert & Weiss 03] B. Geppert, D. Weiss, Goal-Oriented Assessment of Product-Line
Domains, 9th International Software Metrics Colloquium, Sydney, Australia, 2003.

[Gurp & Bosch 02] Jilles van Gurp, Jan Bosch, ‘Design Erosion: Problems & Causes’, Journal
of Systems and Software, 61(2), pp. 105-119, Elsevier, March 2002.

[Jansen et al. 04] Anton Jansen, Jilles van Gurp, Jan Bosch, ‘The recovery of architectural
design decisions’, submitted, 2004.

[Kang et al. 02] K.C. Kang, P. Donohoe, E. Koh, J. Lee, K. Lee, ‘Using a Marketing and
Product Plan as a Key Driver for Product Line Asset Development’, Proceedings SPLC2,
pp. 366-383, LNCS 2379, 2002.

[Kishi et al. 02] T. Kishi, N. Noda, T. Katayama, ’A Method for Product Line Scoping Based
on a Decision-Making Framework’, Proceedings SPLC2, pp. 348-365, LNCS 2379, 2002.

[Ommering 01] R. van Ommering, ‘Roadmapping a Product Population Architecture’,
Proceedings of the 4th International Workshop (PFE 2001), LNCS 2290, pp. 51-63, 2001.

[Schmid 02] K. Schmid, ’A comprehensive product line scoping approach and its validation’,
Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), pp.
593-603, 2002.

[Weiss & Lai 99] Weiss D. M., Lai, C. T. R., 1999. Software Product-Line Engineering: A
Family Based Software Development Process, Addison-Wesley, ISBN 0-201-694387.

[Wijnstra 02] J.G. Wijnstra, ‘Critical Factors for a Successful Platform-Based Product Family
Approach’, Proceedings SPLC2, pp. 68-89, LNCS 2379, 2002.

