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Haemo Dialysis Software Architecture Design Experiences

ABSTRACT 

In this paper we present the experiences and architecture from
a research project conducted in cooperation with two industry
partners. The goal of the project was to reengineer an existing
system for haemo dialysis machines into a domain specific
software architecture [22]. Our main experiences are (1)
architecture design is an iterative and incremental process, (2)
software qualities require a context, (3) quality attribute
assessment methods are too detailed for use during
architectural design, (4) application domain concepts are not
the best abstractions, (5) aesthetics guides the architect in
finding potential weaknesses in the architecture, (6) it is
extremely hard to decide when an architecture design is
ready, and (7) documenting software architectures is a
important problem. We also present the architecture and the
design rational to give a basis for our experiences. We
evaluated the resulting architecture by implementing a
prototype application.
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1 INTRODUCTION
Software architecture design is an art. Today only a few,
sketchy methods exist for designing software architecture
[3,13,14,15]. The challenge facing the software architect is to
find an optimal balance in software qualities to make the
resulting application able to fulfil its quality requirements.
The tools and techniques available for the software architect
are scarce, i.e. design patterns [10], software architecture
patterns [6], and various ADLs with accompanying analysis
tools [8, 16]. In this list of tools and techniques we are
missing time-proven methods for evaluation and assessment
of architecture and software architecture design methods.
Proposals exist, but none has been proven by time. In our

work towards better and more efficient methods for design
and assessment of software architecture we have participated
in research and design projects with a number of industry
partners [3, 5, 19]. These projects have given us some hard-
earned hands on experience of what really makes the design
of software architecture difficult. 

The remainder of this paper is organized as follows. In the
next section we present the case studied in this paper, i.e.,
haemo dialysis machines. In section 3, we present and discuss
our experiences. Further motivation for our experiences is
given in section 4 were we present the archetypes, the
architecture and the design rationale. Finally we present our
conclusions of the paper in section 5.

2 CASE: HAEMO DIALYSIS MACHINES
Haemo dialysis systems present an area in the domain of
medical equipment where competition has been increasing
drastically during recent years. The aim of a dialysis system
is to remove water and certain natural waste products from
the patient’s blood. Patients that have, generally serious,
kidney problems and consequently produce little or no urine
use this type of system. The dialysis system replaces this
natural process with an artificial one.

The research project aimed at designing a new software
architecture for the dialysis machines produced by
Althin Medical. The software of the existing generation
products was exceedingly hard to maintain and certify. The
partners involved in the project were Althin Medical, EC-
Gruppen and the University of Karlskrona/Ronneby. The
goal for EC-Gruppen was to study novel ways of constructing
embedded systems, whereas our goal was to study the process
of designing software architecture and to collect experiences.
As a research method, we used Action Research [2], i.e.
researchers actively participated in the design process and
reflected on the process and the results.

An overview of a dialysis system is presented in figure 1. The
system is physically separated into two parts by the dialysis
membrane. On the left side the dialysis fluid circuit takes the
water from a supply of a certain purity (not necessarily
sterile), dialysis concentrate is added using a pump. A sensor
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monitors the concentration of the dialysis fluid and the
measured value is used to control the pump. A second pump
maintains the flow of dialysis fluid, whereas a third pump
increases the flow and thus reduces the pressure at the dialysis
fluid side. This is needed to pull the waste products from the
patient’s blood through the membrane into the dialysis fluid.
A constant flow of dialysis fluid is maintained by the hydro
mechanic devices that ensure exact and steady flow on each
side (rectangle with a curl).

On the right side of figure 1, the extra corporal circuit, i.e. the
blood-part, has a pump for maintaining a specified blood flow
on its side of the membrane. The patient is connected to this
part through two needles usually located in the arm that take
blood to and from the patient. The extra corporal circuit uses
a number of sensors, e.g. for identifying air bubbles, and
actuators, e.g. a heparin pump to avoid cluttering of the
patients blood while it is outside the body. However, these
details are omitted since they are not needed for the
discussion in the paper.

Figure 1: Schematic of Haemo Dialysis Machine

The dialysis process, or treatment, is by no means a standard
process. A fair collection of treatments exists including, for
example, Haemo Dialysis Filtration (HDF) and Ultra
Filtration (UF) and other variations, such as single needle/
single pump, double needle/single pump. Treatments are
changed due to new research results but also since the
effectiveness of a particular treatment decreases when it is
used too long for a patient. Although the abstract function of
a dialysis system is constant, a considerable set of variations
exists already. Based on experience the involved company
anticipates several additional changes to the software,
hardware and mechanical parts of the system that will be
necessary in response to developments in medical research.

2.1 Legacy Architecture
As an input to the project, the original application
architecture was used. This architecture had evolved from
being only a couple of thousand lines of code very close to the
hardware to close to a hundred thousands lines mostly on a

higher level then the hardware API. The system runs on a PC-
board equivalent using a real-time kernel/operating system. It
has a graphical user interface and displays data using
different kinds of widgets. It is a quite complex piece of
software and because of its unintended evolution, the
structure that was once present has deterioated substantially.
The three major software subsystems are the Man Machine
Interface (MMI), the Control System, and the Protective
system (see figure 2).

Figure 2: Legacy system decomposition 

The MMI has the responsibilities of presenting data and
alarms the user, i.e. a nurse, and getting input, i.e., commands
or treatment data, from the user and setting the protective and
control system in the correct modes.

The control system is responsible for maintaining the values
set by the user and adjusting the values according to the
treatment selected for the time being. The control system is
not a tight-loop process control system, only a few such loops
exists, most of them low-level and implemented in hardware.

The protective system is responsible for detecting any hazard
situation where the patient might be hurt. It is supposed to be
as separate from the other parts of the system as possible and
usually runs on a own task or process. When detecting a
hazard, the protective system raises an alarm and engages a
process of returning the system to a safe-state. Usually, the
safe-state is stopping the blood flow or dialysis-fluid flow.

The documented structure of the system is no more fine-
grained than this and to do any change impact analysis,
extensive knowledge of the source code is required.

2.2 Requirements
The aim during architectural design is to optimize the
potential of the architecture (and the system built based on it)
to fulfil the software quality requirements. For dialysis
systems, the driving software quality requirements are
maintainability, reusability, safety, real-timeliness and
demonstrability. Below, these quality requirements are
described in the context of dialysis systems.

Maintainability. Past haemo dialysis machines produced by
our partner company have proven to be hard to maintain.
Each release of software with bug corrections and function
extensions have made the software harder and harder to
comprehend and maintain. One of the major requirements for
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the software architecture for the new dialysis system family
is that maintainability should be considerably better than the
existing systems, with respect to corrective but especially
adaptive maintenance:

• Corrective maintenance has been hard in the existing
systems since dependencies between different parts of
the software have been hard to identify and visualize.

• Adaptive maintenance is initiated by a constant stream of
new and changing requirements. Examples include new
mechanical components as pumps, heaters and AD/DA
converters, but also new treatments, control algorithms
and safety regulations. All these new requirements need
to be introduced in the system as easily as possible.
Changes to the mechanics or hardware of the system
almost always require changes to the software as well. In
the existing system, all these extensions have deterio-
rated the structure, and consequently the maintainability,
of the software and subsequent changes are harder to
implement. Adaptive maintainability was perhaps the
most important requirement on the system.

Reusability. The software developed for the dialysis
machine should be reusable. Already today there are different
models of haemo dialysis machines and market requirements
for customization will most probably require a larger number
of haemo dialysis models. Of course, the reuse level between
different haemo dialysis machine models should be high.

Safety. Haemo dialysis machines operate as an extension of
the patients blood flow and numerous situations could appear
that are harmful and possibly even lethal to the patient. Since
the safety of the patient has very high priority, the system has
extremely strict safety requirements. The haemo dialysis
system may not expose the dialysis patient to any hazard, but
should detect the rise of such conditions and return the
dialysis machine and the patient to a state which present no
danger to the patient, i.e. a safe-state. Actions, like stopping
the dialysis fluid if concentrations are out of range and
stopping the blood flow if air bubbles are detected in the extra
corporal system, are such protective measures to achieve a
safe state. This requirement have to some extent already been
transformed into functional requirements by the safety
requirements standard for haemo dialysis machines [7], but
only as far as to define a number of hazard situations,
corresponding thresh-hold values and the method to use for
achieving the safe-state. However, a number of other criteria
affecting safety are not dealt with. For example, if the
communication with a pump fails, the system should be able
to determine the risk and deal with it as necessary, i.e.
achieving safe state and notify the nurse that a service
technician is required.

Real-timeliness. The process of haemo dialysis is, by nature,
not a very time critical process, in the sense that actions must
be taken within a few milli- or microseconds during normal
operation. During a typical treatment, once the flows,

concentrations and temperatures are set, the process only
requires monitoring. However, response time becomes
important when a hazard or fault condition arises. In the case
of a detected hazard, e.g. air is detected in the extra corporal
unit, the haemo dialysis machine must react very quickly to
immediately return the system to a safe state. Timings for
these situation are presented in the safety standard for haemo
dialysis machines [7].

Demonstrability. As previously stated, the patient safety is
very important. To ensure that haemo dialysis machines that
are sold adhere to the regulations for safety, an independent
certification institute must certify each construction. The
certification process is repeated for every (major) new release
of the software which substantially increases the cost for
developing and maintaining the haemo dialysis machines.
One way to reduce the cost for certification is to make it easy
to demonstrate that the software performs the required safety
functions as required. This requirement we denote as
demonstrability.

2.3 Design Method
In the project we used our ARCS design method for designing
the architecture [3], presented graphically in figure 3. The
ARCS method starts with the requirement specification.
From this input data, the architect synthesizes an architecture
primarily based on the functional requirements. This first
version of the architecture contains the initial archetypes. Our
definition and usage of the term ‘archetype’ differs from [21].
We define the archetype as a basic abstraction, which is used
to model the application architecture. The archetypes
generally evolve through the design iterations.

The architecture is evaluated through the use of different
evaluation techniques. The ARCS method uses four
evaluation approaches:

• Scenario-based evaluation is techniques were the soft-
ware qualities are expressed as typical or likely scenar-
ios. For example, maintainability could be expressed as
change scenarios defining likely changes and the imple-
mentation of the changes should require minimal modifi-
cation to the architecture.

• Mathematical modeling (including metrics & statistics)
is a technique were product and process data are used to
make predictions about the potential qualities of a result-
ing product or task.

• Simulation is a technique similar to scenarios, but more
suitable to dynamic properties, such as performance and
reliability. The architecture is modeled in a simulation
environment and its behavior is used to predict the soft-
ware quality attribute. For example, safety could be eval-
uated by simulating the execution of the haemo dialysis
architecture in different hazard situations.

• Experience-based reasoning is the technique that is most
widely used and serves as a suitable complement to other
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techniques. Experience designers often intutively identi-
fies designs that are not addressing certain quality
requirements adequately. Based on the initial identifica-
tion, further investigation may be performed using the
other more objective techniques.

If the results show that the potential for the software qualities
is sufficient, the architecture design is finished. Generally, the
evaluation of the initial architecture reveals a number of
deficiencies. To address these, the designer transforms the
architecture into a new version, using a set of available
transformations. In the ARCS method, five categories of
transformations are identified:

• Applying an architecture style result in changes to the
overall structure.

• Applying and architecture pattern add certain behav-
ioural rules to the architecture, e.g. Periodic Objects [19].

• Applying design patterns impact only a few elements of
the architecture.

• Converting quality requirement to functionality, e.g.,
handling robustness by introducing exception handling.

• Distributing Requirements. For example, response time
requirements on the whole system may be decomposed
into response time requirements for individual elements.

These transformations only reorganize the domain
functionality and affect only the software quality attributes of
an architecture. After a set of transformations, architecture
evaluation is repeated and the process is iterated until the
quality requirements are fulfilled.

Figure 3: Repeated evaluation for control of the design

3 LESSONS LEARNED
During the architecture design project, we gathered a number
of experiences that, we believe, have validity in a more
general context than the project itself. In this section, we
present the lessons that we learned. In the next section, the
architecture design process leading to them and the
foundations for our experiences are presented.

3.1 Quality requirements without context
Different from functional requirements, quality requirements
are often rather hard to specify. For instance, one of the
driving quality requirements in this project was
maintainability. The requirement from Althin Medical,
however, was that maintainability should be “as good as
possible” and “considerably better than the current system”.
In other projects, we have seen formulations such as “high
maintainability”. Even in the case where the IEEE standard
definitions [11] are used for specifying the requirements,
such formulations are useless from a design and evaluation
perspective. For example, maintainability mean different
things for different applications, i.e. haemo dialysis machine
software and a word processor have totally different
maintenance. The concrete semantics of a quality attribute,
like maintainability, is dependent on its context. The
functional requirements play an important role in providing
this context, but are not enough for the designer to
comprehend what actual maintenance tasks can be expected.

Based on our experience, we are convinced that quality
requirements should be accompanied with some context that
facilitates assessment. The nature of the context depends on
the quality requirement. For instance, to assess
maintainability, one may use a maintenance profile, i.e. a set
of possible maintenance scenarios with an associated
likelihood. To assess performance, one requires data on the
underlying hardware and a usage profile. Based on these
profiles, one is able to perform an objective analysis of the
quality attributes. Every quality requirement requires its own
context, although some profiles, e.g., the usage profile, can be
shared by multiple contexts.

Since the customer had specified the quality requirements
rather vaguely, we were forced to define them in more detail.
We felt that the time needed to specify the profiles was well
worth the effort. It serves as a mental tool for thinking what
the real effects on the system and its usage are. Also it helps
to separate different qualities from each other, as they are
influencing each other in different ways. Finally, the profiles
can be used for most forms of assessment, including
simulation.

3.2 Too large assessment efforts
For each of the driving quality requirements of the dialysis
system architecture, research communities exist that have
developed detailed assessment and evaluation methods for
their quality attribute. In our experience, these techniques
suffer from three major problems in the context of
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architecture assessment. First, they focus on a single quality
attribute and ignore other, equally important, attributes.
Second, they tend to be very detailed and elaborate in the
analysis, requiring, sometimes, excessive amounts of time to
perform a complete analysis. And finally the techniques are
generally intended for the later design phases and often
require detailed information not yet available during
architecture design.

Since software architects generally have to balance a set of
quality requirements, lack the data required by the
aforementioned techniques and work under time pressure, the
result is that, during architectural design, assessment is
performed in an ad-hoc, intuition-based manner, without
support from more formal techniques. Although some work
e.g., [14], is performed in this area, there still is a considerable
need for easy to use architecture assessment techniques for
the various quality attributes, preferably with (integrated)
tool support.

3.3 Architecture abstractions outside application domain
Traditional object oriented design methods, like
[4, 12, 20, 23], provide hints and guidelines for finding the
appropriate abstractions for the object oriented design. A
common guideline is to take the significant concepts from the
problem domain and objectify them. However, in this project
as well as in a number of other projects, we observed that
some or several of the architectural abstractions, or
archetypes, used in the final version did not exist (directly) in
the application domain. Instead, these archetypes emerged
during the design iterations and represented abstract domain
functionality organized to optimize the driving quality
attributes.

We found that when a true understanding of the concept and
its relations emerges, we found the most suitable abstraction.
For example, during the first design iteration, we used the
domain concepts we had learned from studying the
documentation and talking to domain experts. As we came to
know the requirements and expected behaviour of the system,
we iterated the design and the abstractions used in the
architecture design were changed from domain concepts to
archetypes that incorporate the quality requirements. During
the design iterations, we became more and more aware of
how the quality requirements would have to work in
cooperation. For example, even though using design patterns
might help with flexibility in some cases, the demonstrability
and real-timeliness became hard to ensure and thus other
abstractions had to be found.

3.4 Architecting is iterative
After the design of the dialysis system architecture, but also
based on earlier design experiences, we have come to the
conclusion that designing architectures is necessarily an
iterative activity and that it is impossible to get it completely
right the first time. We designed the software architecture in
two types of activities, i.e. individual design and group

meeting design. We learned that group meetings and design
teams meeting for two-three hours were extremely efficient
compared to merging single individuals designs. Although
one or two were responsible for putting things on paper and
dealing with the details, virtually all creative design and
redesign work was performed during these meetings.

In the case where one individual would work alone on the
architecture it was very easy to get stuck with one or more
problems. The problems were, in almost every case, resolved
the next design meeting. We believe that the major reason for
this phenomenom is that the architecture design activity
requires the architect to have almost all requirements,
functional and quality, in mind at the same time. The design
group have a better chance in managing the volume and still
come up with creative solutions. In the group, it is possible
for a person to disregard certain aspects to find new solutions.
The other group members will ensure that those aspects are
not forgotten.

Another problems we quickly discovered was that design
decisions were forgotten or hard to remember between the
meetings. We started early with writing design notes. The
notes were very short, a few lines, with sketches where
helpful. First, it helped us to understand why changes were
made from previous design meetings. Secondly, it also made
it easier to put together the rationale section of the
architecture documentation. At some points, undocumented
design decisions were questioned at a later stage and it took
the quite some time to reconstruct the original decision
process. 

The design notes we used were not exposed to inspections,
configuration management or other formalizing activities. As
such an informal document it was easy to write during the
meeting. In fact, the designers soon learned to stop and have
things written down for later reference. Since the sole
purpose is to support the memory of the designers, often a
date and numbering of the notes is enough.

3.5 Design aesthetics
The design activity is equally much a search for an
aesthetically appealing design as it is searching and
evaluating the balance of software qualities. The feeling of a
good design worked as a good indicator when alternatives
were compared and design decisions needed to be made. In
addition, the feeling of disliking an architecture design often
sparked a more thorough analysis and evaluation to find what
was wrong. Most often, the notion proved correct and the
analysis showed weaknesses.

According to our experience, the sense of a aesthetic design
was often shared within the group. In cases where differences
in opinions existed, the problem or strength could be
explained using our more formal framework and we reached
consensus. It is our belief that a software designer with
roughly the same amount of experience outside the project
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would experience the same feeling of aesthetic design. That
is, although the “feeling” is not objective, it is at least
intersubjective.

Since this intuitive and creative aspect of architecture design
triggered much of the formal activities and analyses, we
recognize it as very important. However, design methods,
techniques and processes do not mention nor provide this as
a part. It is not a secret but nor is it articulated very often how
important this gut feeling is to software design.

3.6 Are we done?
We found it hard to decide when the design of the software
architecture had reached its end criteria. One important
reason is that software engineers are generally interested in
technically perfect solutions and that each design is
approaching perfectness asymptotically, but never reaches it
completely. Architecture design requires balancing
requirements and, in the compromise, requirements generally
need to be weakened. Even if a first solution is found, one
continues to search for solutions that require less weakening
of requirements. To make this even harder, in our experience,
we found it very hard to decide when the architecture design
was not architecture design anymore but had turned into
detailed design.

A second important reason making it hard to decide whether
a design is finished is that a detailed evaluation giving
sufficient insight in the attributes of an architecture design is
expensive, consuming considerable time and resources.
Engineers often delay the detailed evaluation until it is rather
certain that the architecture fulfils its requirements. Often, the
design has passed that point considerably earlier. As we
identified in section 3.2, there is a considerable need for
inexpensive evaluation and assessment techniques,
preferably with tool support.

3.7 Documenting the essence of a software architecture
During the architecture design only rudimentary
documentation was done, i.e. sketchy class diagrams and
design notes. When we delivered the architecture to detailed
design it had to be more complete. We tried to use the 4+1
View Model [15], but found it hard to capture the essence of
the architecture. Projet members that had not participated in
the design of the new architecture had to read the
documentation and try to reconstruct this essence themselves.
We have not yet been able to understand what the of a
software architecture are, but we feel that its not equivalent
with design rationale.

However, since we were able to communicate with the
designers and implementers, we could overcome the
problems with the written documentation. The problem was
put on its edge, when we started writing this paper. This time,
we would not get a chance to communicate the architecture
and its essence with any other means than this document. It is

our opinion that although many of the aspects of this
architecture are presented in this paper, the essence still
remain undocumented.

4 ARCHITECTURE
The haemo dialysis architecture project started out with a
very informal description of the legacy architecture,
conveyed both in text and figures and via several discussions
during our design meetings. For describing the resulting
architecture we use two of the four views from the 4+1 View
Model [15], i.e. Logical View and Dynamic View. The
development view we omit since it do not contribute to the
understanding of the design decisions, trade offs and
experiences. We also omit the physical view since the
hardware is basically a single processor system. However, we
feel that it is appropriate to add another subsection of our
architecture description, i.e. archetypes. During the design
iterations we focused on finding suitable archetypes which
allowed us to easily model the haemo dialysis architecture
and its variants. The archetypes are very central to the design
and important for understanding the haemo dialysis
application architecture.

4.1 Logic Archetypes
When we started the re-design of the software architecture for
the haemo dialysis machine, we were very much concerned
with two things; the maintainability and the demonstrability. 

We knew that the system had to be maintained by others than
us, which meant that the archetypes we used, would have to
make sense to them and that the form rules were not limiting
and easy to comprehend. Also, we figured, that if we could
choose archetypes such that the system was easy to
comprehend the effort to show what the system does becomes
smaller. We realized that much of the changes would come
from the MMI and new treatments and we needed the
specification and implementation of a treatment to be easy
and direct. Our aim was to make the implementation of the
treatments look comparable to the description of a treatment
written by a domain expert using his or hers own terminology
on a piece of paper.

After three major iterations we decided on the Device/
Control abstraction, which contained the following
archetypes and their relations (figure 4):

Device. The system is modeled as a device hierarchy, starting
with the entities close to the hardware up to the complete
system. For every device, there are zero or more sub-devices
and a controlling algorithm. The device is either a leaf device
or a logical device. A leaf device is parameterized with a
controlling algorithm and a normalizer. A logical device is,
in addition to the controlling algorithm and the normalizer,
parameterized with one or more sub devices.

ControllingAlgorithm. In the device archetype, information
about relations and configuration is stored. Computation is
done in a separate archetype, which is used to parameterize
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Device components. The ControllingAlgorithm performs
calculations for setting the values of sub output devices based
on the values it gets from input sub devices and the control it
receives from the encapsulating device. When the device is a
leaf node the calculation is normally void.

Normaliser. To deal with different units of measurement a
normalization archetype is used. The normalizer is used to
parameterize the device components and is invoked when
normalizing from and to the units used by up-hierarchy
devices and the controlling algorithm of the device.

AlarmDetectorDevice. Is a specialization of the Device
archetype. Components of the AlarmDetectorDevice
archetype is responsible for monitoring the sub devices and
make sure the value read from the sensors are within the
alarm threshold value set to the AlarmDetectorDevice. When
threshold limits are crossed an AlarmHandler component is
invoked.

AlarmHandler. The AlarmHandler is the archetype
responsible for responding to alarms by returning the haemo
dialysis machine to a safe-state or by addressing the cause of
the alarm. Components are used to parameterize the
AlarmDetectorDevice components.

Figure 4: The relations of the archetypes

4.2 Scheduling Archetypes
Haemo dialysis machines are required to operate in real time.
However, haemo dialysis is a slow process that makes the
deadline requirements on the system less tough to adhere to.
A treatment typically takes a few hours and during that time
the system is normally stable. The tough requirements in
response time appear in hazard situations where the system is
supposed to detect and eliminate any hazard swiftly. The
actual timings are presented in medical equipment standards
with special demands for haemo dialysis machines [7]. Since
the timing requirements are not that tight we designed the
concurrency using the Periodic Object pattern [19]. It has
been used successfully in earlier embedded software projects.

Scheduler. The scheduler archetype is responsible for
scheduling and invoking the periodic objects. Only one
scheduler element in the application may exist and it handles
all periodic objects of the architecture. The scheduler accepts
registrations from periodic objects and then distributes the

execution between all the registered periodic objects. This
kind of scheduling is not pre-emptive and requires usage of
non-blocking I/O.

Periodic object. A periodic object is responsible for
implementing its task using non-blocking I/O and using only
the established time quanta. The tick() method will run to its
completion and invoke the necessary methods to complete its
task. Several entities of this archetype may exists in the
application architecture and the periodic object is responsible
for registering itself with the scheduler. (see figure 5)

Figure 5: Basic Concurrency with Periodic Objects

4.3 Connector Archetypes
The communication between the architecture elements is
done by using causal connections [17]. The principle is
similar to the Observer pattern [10] and the Publisher-
Subscriber pattern [6]. An observer observers a target but the
difference is that a master, i.e. the entity registering and
controlling the dependency, establishes the connection. Two
different ways of communication exist, the push connection
and the pull connection. In the first case, the target is
responsible for the notifying the observer by sending the
notify message. In the second case it is the observer that
request data from the target. The usage of the connection
allows for dynamic reconfiguration of the connection, i.e.
push or pull. (figure 6)

Target. maintains information that other entities may be
dependent on. The target is responsible for notifying the link
when its state changes.

Observer. depends on the data or change of data in the target.
Is either updated by a change or by own request.

Link. Maintains the dependencies between the target and its
observers. Also holds the information about the type of
connection, i.e. push or pull. It would be possible to extend
the connection model with periodic updates.

Figure 6: Push/Pull Update Connection
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Figure 7: Example haemo dialysis Application Architecture

4.4 Application Architecture
The archetypes represent the building blocks that we may use
to model the application architecture of a haemo dialysis
machine. In figure 7 the application architecture is presented.
The archetypes allow for the application architecture to be
specified in a hierarchical way, with the alarm devices being
orthogonal to the control systems device hierarchy. 

This also allows for a layered view of the system. For
example, to specify a treatment we only have to interface the
closest layer of devices to the HaemoDialysisMachine device
(figure 7). There would be no need to understand or
interfacing the lowest layer. The specification of a treatment
would look something like this in source code:

conductivity.set(0.2); // in milliMol
temperature.set(37.5); // in Celsius
weightloss.set(2000); // in milliLitre
dialysisFluidFlow.set(200);//in milliLitre/minute
overHeatAlarm.set(37.5,5); // ideal value in
// Celsius and maximum deviation in percent
wait(180); // in minutes

4.5 Dynamic View

The Control System. The application architecture will be
executed in pseudo parallel, using the periodic object pattern.
In figure 8, the message sequence of the execution of one
tick() on a device is presented. First, the Device collects the
data, normalizes it using the normalizer parameter and then
calculates the new set values using the control algorithm
parameter.

Figure 8: The message sequence of a control tick()

Alarm Monitoring. The control system may utilize
AlarmDevices to detect problem situations and the protective
system will consist of a more complex configuration of
different types of AlarmDevices. These will also be run
periodically and in pseudo parallel. The message sequence of
one tick() for alarm monitoring is shown in figure 9.

Figure 9: A tick() of alarm monitoring
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Treatment Process. The treatment process is central to the
haemo dialysis machine and its software. The general process
of a treatment consists of the following steps; (1) preparation,
(2) self test, (3) priming, (4) connect patient blood flow, (5)
set treatment parameters, (6) start dialysis, (7) treatment done
(8) indication, (9) nurse feeds back blood to patient, (10)
nurse disconnects patient from machine, (11) patient and
treatment records saved, (12) disinfecting, (13) power down/
stand by.

The process generally takes several hours and the major part
of the time the treatment process are involved in a monitoring
and controlling cycle. The more detailed specification of this
sub process is here.

1. Start fluid control
2. Start blood control
3. Start measuring treatment parameters, e.g. duration,

weight loss, trans-membrane pressure, etc.
4. Start protective system
5. Control and monitor blood and fluid systems until time-

out or accumulated weight loss reached desired values
6. Treatment shutdown

4.6 Rationale
During the design of the haemo dialysis architecture we had
to make a number of design decisions. In this section the
major design decisions and their rationale are presented.

The starting point. From the start we had a few documents
describing the domain and the typical domain requirements.
In the documents, the subsystems of the old system were
described. Also, we had earlier experiences from designing
architectures for embedded systems, i.e. Fire Alarm Systems
[19] and Measurement Systems [3]. We started out using the
main archetypes from these experiences which were sensors
and actuators. 

Initially, we wanted to address the demonstrability issues by
ensuring that an architecture was easy to comprehend,
consequently improving maintainability. The intention was to
design an architecture that facilitated visualization and
control of the functions implemented in the final application.
Especially important is it to demonstrate the patient safety for
the time which the patient is connected with the machine, i.e.
during treatments.

Our goal was to make the specification and implementation
of the treatments very concise and to as high extent as
possible look like the specification of a treatment that a
domain expert would give, i.e. using the same concepts, units,
and style.

The result was that our initially chosen abstraction, sensor
and actuators did not suit our purpose adequately. The reason
is that the abstraction gives no possibility of shielding the
hardware and low-level specifics from the higher-level
treatment specifications.

The iterations. The architecture design was iterated and
evaluated some three times more, each addressing the
requirements of the previous design and incorporating more
of the full requirement specification. 

In the first iteration, we used the Facade design pattern [10]
to remedy the problem of hiding details from the treatment
specifications. Spurred by the wonderful pattern we
introduced several facades in the architecture. The result was
unnecessary complexity that made the architecture more
complex and did not give the simple specification of a
treatment that we desired.

In the second iteration, we reduced the number of facades and
adjusted the abstraction, into a device hierarchy. The new
abstraction allowed us to use sub-devices that were
communicating with the hardware and dealt with the low-
level problems such as normalization and hardware API’s.
These low-level devices were connected as logical inputs and
outputs to other logical devices. These logical devices handle
logical entities that are less hardware specific, e.g. a heater
device and a thermometer device are connected to the logical
device Temperature (figure 7). This allows for specification
of treatments using the vocabulary of the logical devices that
can be adapted from the low level hardware parameters to the
domain vocabulary.

In the third major iteration, the architecture was improved for
flexibility and reuse by introducing parameterization for
normalization and control algorithms. Also the alarm
detection device was introduced for detecting anomalies and
hazards situations. 

Concurrency. The control system involves constantly
executing control loops that evaluate the current state of the
process and calculates new set values to keep the process at
its optimal parameters. This is supposed to be done
simultaneously, i.e. in parallel. However, the system is in its
basic version only equipped with a signal processor reducing
parallelism to pseudo parallel. On a single processor system
we have the options of (1) choose to use a third party real-
time kernel supporting multi-threads and real-time
scheduling. And (2) we can design and implement the system
to be semi-concurrent using the periodic objects approach
[19] and make sure that the alarm functions are given the due
priority for achieving swift detection and elimination of
hazards. Finally (3) we may choose the optimistic approach,
i.e., design a sequentially executing system and make it fast
enough to achieve the tightest response time requirements. 

The first one is undesirable because of two reasons, i.e.
resource consumption and price. The resources, i.e. memory
and processor capacity, consumed by such a real-time kernel
are substantial especially since we most likely will have to
sacrifice resources, e.g. processor capacity and memory, for
service we will not use. In addition, the price for a certified
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real-time kernel is high and the production and maintenance
departments become dependent on third-party software
supplier.

The third option is perhaps the most straightforward option
and could probably be done in such a way that it works. The
profound problem is that it becomes un-deterministic. This is
affecting the demonstrability negatively. Having software
certification in mind, it is unrealistic to believe that such an
implementation would be allowed in a haemo dialysis
machine.

The second option give some limitations in the
implementation and design of the system, i.e. all objects must
implement their methods using non-blocking I/O. However,
it still is the most promising solution. Periodic objects
visualize the parallel behavior more clearly, using the
scheduler and its list of periodic objects especially since it has
been used successfully in earlier systems.

Communication. The traditional component communication
semantics are that a sender sends a message to a known
receiver. However, this simple message send may represent
many different relations between components. In the design
of the dialysis system architecture, we ran into a problem
related to message passing in a number of places. The
problem was that, in the situation where two components had
some relation, it was not clear which of the two components
would call the other component. For example, one can use a
pushing approach, i.e. the data generating component
pushing it to the interested parties, or a pulling approach,
where the interested components inquire at the data
generating component, and each approach requires a
considerable different implementation in the involved
components.

As a solution, the notion of causal connections [17] was
introduced that factors out the responsibility of abstracting
the calling direction between the two components such that
neither of the components needs to be concerned with this. 

The advantage of using a causal connection is that the
involved components can be focused on their domain
functionality and need not concern about how to inform or
inquire the outside world, thus improving the reusability of
the components. In addition, it allows one to replace the type
of causal connection at run-time, which allows a system to
adapt itself to a changing context during operation.

4.7 Evaluation
In this section an analysis of the architecture design is
presented with respect to the quality requirements. As stated
in section 3.2, the traditional assessment methods are
inadequate for the architecture level and therefore our
evaluation was strongest on maintainability (prototype) and
more subjective for the other quality requirements.

Maintainability. To evaluate the maintainability and
feasibility of the architecture the industrial partner EC-
Gruppen developed a prototype of the fluid-system. (None of
the project members volunteered to act as a patient).

The prototype included controlling fluid pumps and the
conductivity sensors. In total the source code volume for the
prototype was 5,5 kLOC.

The maintainability was validated by an extension of the
prototype. Changing the pump process control algorithms, a
typically common maintenance task. The change required
about seven (7) lines of code to change in two (2) classes.
And the prototype was operational again after less than two
days work from one person.

Although this is not scientifically valid evidence, it indicates
that the architecture easily incorporates planned changes.

Reusability. The reusability of components and applications
developed using this architecture has not been measured, for
obvious reasons. But our preliminary assessment shows that
the sub quality factors of reusability [18], i.e. generality,
modularity, software system independence, machine
independence and self-descriptiveness, all are reasonably
accounted for in this architecture. First, the architecture
supports generality. The device archetype allow for
separation between devices and most of the application
architecture will be made of devices of different forms.
Second, the modularity is high. The archetypes allows for
clear and distinguishable separation of features into their own
device entity. Third, the architecture has no excessive
dependencies to any other software system, e.g. multi
processing kernel. Fourth, the hardware dependencies have
been separated into their own device entities and can easily by
substituted for other brands or models. Finally, the archetypes
provide comprehensible abstraction for modeling a haemo
dialysis machine. Locating, understanding and modifying
existing behavior is, due to the architecture an easy and
comprehendible task. 

Safety. The alarm devices ensure the safety of the patient in a
structured and comprehensible way. Every hazard condition
that is monitored for has its own AlarmDetectorDevice. This
makes it easier to visualize the lack of monitoring for certain
hazards and it makes it easier to keep the relationships
between hazard conditions visible. 

Real-timeliness. This requirement was not explicitly
evaluated during the project. Instead our assumption was that
the data processing performance would equal that of a
Pentium processor. Given that the prototype would work on a
PC running NT, it would be able to run fast enough with a less
sophisticated operating system in the haemo dialysis
machine.

Demonstrability. Our goal with the architecture design when
concerned with demonstrability was to achieve a design that
made the specification of a treatment very similar to how a
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domain expert would express the treatment in his or her own
words. The example with the source code in section 4.4 for
specifying a treatment in the application is very intuitive and
similar to the information we have about treatments. Hence,
we consider that design goal achieved.

5 CONCLUSIONS
In this paper, the architectural design of a haemo dialysis sys-
tem and the lessons learned from the process leading to the ar-
chitecture have been presented. The main experiences from
the project are the following. First, quality requirements are
often specified without any context and this complicates the
evaluation of the architecture for these attributes and the bal-
ancing of quality attributes. Second, assessment techniques
developed by the various research communities studying a
single quality attribute, e.g. performance or reusability, are
generally intended for later phases in development and re-
quire sometimes excessive effort and data not available dur-
ing architecture design. Third, the archetypes use as the
foundation of a software architecture cannot be deduced from
the application domain through domain analysis. Instead, the
archetypes represent chunks of domain functionality opti-
mized for the driving quality requirements. Fourth, during the
design process we learned that design is inherently iterative,
that group design meetings are far more effective than indi-
vidual architects and that documenting design decisions is
very important in order to capture the design rationale. Fifth,
architecture designs have an associated aesthetics that, at
least, is perceived inter-subjectively and an intuitively ap-
pealing design proved to be an excellent indicator, as well as
the lack of appeal. Sixth, it proved to be hard to decide when
one was done with the architectural design due to the natural
tendency of software engineers to perfect solutions and to the
required effort of architecture assessment. Finally, it is very
hard to document all relevant aspects of a software architec-
ture. The architecture design presented in the previous section
provides some background to our experiences.
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