
Development and Use of Dynamic Product-line
Architectures

Jesper Andersson
Växjö universitet

Jesper.Andersson@msi.vxu.se

Jan Bosch
University of Groningen

J.Bosch@cs.rug.nl

Abstract

Software product families are used to shorten time-to-market, improve
quality, and lower cost, by means of effective reuse. This paper presents
the results of case study conducted at four Swedish companies that are in-
volved in either the development of or development with a software product
family. We identify and discuss several issues such as inter-organisational
development of platforms, platforms that employ dynamic reconfiguration,
and platforms as a vehicle to achieve certain quality attributes. We anal-
yse issues and demonstrate how these can be deduced to shortcomings in
scoping and variability management for non-functional quality attributes and
dynamic architectures.

1 Introduction

One of the most prominent trends present in software engineering practice is the
delaying of design decisions. Whereas software architects and engineers earlier
decided during the specification phase what exact product to build, currently the
ambition is to delay the decision concerning the exact product to build to the lat-
est possible point. The rationale for this is that design decisions, once taken, are
very difficult to revoke. Consequently, when the requirements change during the
development process or when the developed software is considered for use in a
different context, it is, sometimes prohibitively, expensive to replace one design
decision with another. The delayed design decisions typically are concerned with
features that should be present in some configurations, but not in others. A feature
may consist both of functional and quality requirements. Several types of quality
requirements exist. Some are relevant from a user perspective, e.g. dependability,
whereas others are relevant for the development organisation, e.g. maintainability.
Several engineers and researchers have identified the connection between the soft-
ware architecture and the qualities a system exhibits. Software Architecture (SA) is
defined as “the fundamental organization of a system embodied in its components,
their relationships to each other and to the environment and the principles guiding

1

its design and evolution” [1]. Architecture as a facilitator for software quality is
described in several publications [2, 3].

Software reuse, cuts costs and improves overall quality, hence software devel-
opment organisations search for more advanced techniques improving their day-to-
day operations. Examples of such techniques are libraries, frameworks, and plat-
forms, all widely used vehicles for increased reuse of functionality (and quality).
With libraries, reuse is calling library methods. Reuse in the framework context, is
about specialisation, where behaviour and structure is inherited and specialised in
application classes. A platform (or middle-ware) is a combination of a framework,
a library, and a run-time system. Platforms provide functionality and run-time sup-
port that assist developers in developing applications in certain functional and/or
quality domains. The platform provides methods in the library style for access and
control. In order to access them, components have to conform to certain properties.
This is achieved by inheriting properties from abstract classes. Like in frameworks,
a CORBA platform requires that client and server components conform to some
abstract CORBA component.

A more recent development within the software engineering community is the
increasing use of Software Product Families (SPF). A SPF consists of a product
family architecture (unification of individual product architectures), a set of shared
software components and set of products that have been derived from the shared as-
sets. The main advantage of a software product family is that it allows for pervasive
intra-organisational reuse by exploiting the commonalities between a set of prod-
ucts, while allowing for variability. The notion of variability and variation points
is discussed by, among others, van Gurp et.al. [4]. A variation point is a location
in a software asset for which multiple variants and/or parametric configurations
exist. A variation point is introduced when a design decision has been delayed.
The main aim of software product families is to delay design decisions concern-
ing the precise requirements (both functional and quality) until product derivation
and, consequently, the compilation and linking phase. However, in several systems
this is not sufficient and several of the variation points need to be kept unbound
until run-time. Several products provide provisioning for run-time configurabil-
ity, were end-users control the feature set available in a product. The notion of
dynamic software architectures [5], i.e. software architectures with the ability to
change configuration at run-time, has recently started to attract increasing amounts
of attention. The extended capabilities provide developers with proper means for
implementing different functional as well as quality requirements.

One can identify several examples of the trend to delay design decisions and
improve reusability, including the increasing configurability of software products
and the widespread use of software product families. The problems and issues
concerning the industrial use of dynamic software architectures, especially in the
context of software product families and platforms, has received relatively little
attention in the software engineering research community.

To address this, we present in this paper the results of a case study involving
four Swedish software development organisations, i.e. MECEL Automotive Sys-

2

tems, Ericsson Radio Systems (ERA), Ericsson Mobile Data Design (ERV), and
ENEA-OSE (we refer to these organisations by the enterprise name, although the
study was conducted at groups within these organisations). The objective for the
case study was to survey the state of practice, identify issues and problems, and,
based on this, deduce new relevant research questions for the SA community. The
case study is based on interviews and document studies. The selection of organisa-
tions for this study spans from, low-level, operating system functionality providers,
via developers of middle-ware and traditional system developers, to system engi-
neers that integrate pre-developed subsystems. A second dimension is whether
the organisation is a provider or a user of a platform. ENEA and ERV develop
platforms while ERA and MECEL represent “users” of such platforms.

Interestingly, the primary reason for selecting a platform for product devel-
opment has been to support the implementation of specific quality attributes, e.g.
high-availability, performance and fault-tolerance, rather than to achieve reuse of
functionality or decreased time-to-market. The company’s argument for employing
dynamic architecture technology is that requirements like availability and flexibil-
ity require a dynamic, configurable, solution. The back side of this approach, i.e.
it’s the complex technical structure and consequently expensive implementation,
are accepted and dealt with accordingly. Managing non-functional requirements in
a software engineering project is difficult. By employing platforms the companies
believe that some of the risks connected to this can be mitigated.

The contribution of this paper is twofold. The investigation has revealed new
and interesting issues and research questions concerned with inter-organisational
product family architectures, problems related to scoping and variability manage-
ment for quality attributes, and dynamic product family architectures. In addition,
we present an in-depth analysis of issues connected to commonality, variability,
and scoping of non-functional requirements.

The remainder of this paper is organised as follows. First we introduce related
work in Section 2. In Section 3, we define the field of SPFs and the relation between
SA and quality attributes. Section 4 and 5 present the case study method and
organisations. In Section 6, we present the identified problems and issues in-depth.
Section 7 contains a general discussion and presents a research agenda based on
the findings in the case study. Finally, in Section 8 we conclude and discuss future
work.

2 Related Work

The ideas of designing “catalogues” of standard functionality, selecting instances,
and including these in a product are not new, as are the problems and issues con-
nected to it. A historical retrospect reveals that all major contributions in the area
of software libraries have recognised variation and the issue of achieving quality.

In McIlroys seminal paper [6], families of routines and the number of vari-
ants of individual routines that a standard catalogue of routines should offer are

3

discussed. Continuing, McIlroy also discusses what will happen if quality and
context dimensions, such as robustness and precision, are included. McIlroy con-
clude that if these dimensions are included, the variability will grow exponentially
with respect to the number of possible implementations. McIlroy also identifies the
need for trade-offs, and to include combinations of tradeoffs among the candidate
variants. As an example of a trade-off, he uses the classic time-space trade-off for
algorithms.

Parnas introduces the concept of program families [7] in the software module
context. He argues that if a set of similar products is to be designed and imple-
mented one should consider them as a whole, a program family. Further on he
discusses the concept of variation and how important it is to keep the family in
focus and not the individual products.

Frameworks [8] are sets of interacting and cooperating classes that users reuse
via specialisation or direct instantiation in an application. Frameworks provide an
abstract design for a set of related problems. The applications must not necessarily
be in the same domain, but at some conceptual level, the basic requirements should
be similar. Usually frameworks are divided into two classes, vertical frameworks
that provide domain specific support, and horizontal frameworks, providing more
general application support for use in many different domains.

Some systems described in this study are examples of middle-ware software
systems. More formally, a middle-ware software is a set of purpose specific ser-
vices, usually packaged as a platform, that “glue” and coordinate the behaviour of
two or more components. The most recognised middle-ware software packages
provide services for transparent distributed computing, examples here are CORBA
and .NET. Beside service functionality, several middle-ware platforms include gen-
eral support for some (set of) quality attributes.

The related work in the area of SPFs will be covered in Section 3 below. Most
of the discussed publications are dealing with problems connected to family func-
tionality and activities pre-execution which contrast to our study.

Managing quality attributes (or non-functional requirements) in software engi-
neering is regarded as difficult to address, mainly because the nature of these have
been insufficiently explored. Recently, more pragmatic, still formal, approaches
to effective management of quality attributes in software development have been
proposed [9].

3 Software Product Families

Software enterprises are all involved in the never-ending activities of cutting devel-
opment costs as well as improving product quality. One of the more promising ap-
proaches (at least according to the number of published success stories), which both
cuts costs and improves quality, is domain-specific, intra-organisational, reuse-
based development. Built on top of the foundation of software architectures, soft-
ware product families focus on improving reuse and, thus cut costs, shorten lead-

4

times, and improve quality. A software development organisation normally spe-
cialises in one or a limited number of areas. It produces a number of individual
software products within its domain of expertise. The related products, typically,
have common structure and behaviour. A product family architecture is the unifica-
tion of all system architectures in a SPF. The product family architecture captures
the architectural commonalities and variabilities [10] in a product family and com-
prises a map that guides developers when new application instances are derived.
The selection of specific component implementations is guided by configuration
information made explicit in the family architecture. The product family is used
when products are created (i.e. instantiated or derived). Instantiation of a new
product typically involves selection of components from the product family archi-
tecture and addition of product specific components. This procedure guarantees
that the amount of superfluous functionality in the product is minimised (n.b. not
minimal). The product specific components can later be evaluated. If they are com-
mon to other products as well they are included in the product family architecture.
Figure 1 depicts how products are generated, a common product family architec-
ture is derived from product specific architectures and component instances of the
family and product-specific components are integrated.

To fully understand a product-family, we need tools to describe the common
parts and the differences between two or more products. A naive approach is to
talk about which components or classes are used in a specific product and which
are not. This approach is too low level and not feasible in practice (i.e. for large
families or large products). For instance, the behaviour(role) of a component may
vary from product to product so two products with the same set of components may
demonstrate different behaviour. Approaching this problem on the level of com-
ponents discards the important fact that behaviour is also connected to component
interactions. Instead, the concept of features, is much more promising. A feature,
we define as “a logical unit of behaviour that is specified by a set of functional and
quality requirements” [2, p. 194]. A feature is realized by sub-architectures with a
(limited) set of interacting components. Components and features have an n × m
relation, i.e. multiple features may depend on the same component. This will im-
pact the traceability and complicate tracing from features to components and vice
versa. If something is changed in the shared component, it will possibly affect two
or more features. There are also other, non-explicit, feature dependencies.

Several of the non-functional requirements are not purely local, i.e. their be-
haviours are affected by and have effect on other features in the system. Coplien
uses the term “Good domains” [10] for domains that can be managed easily. The
other class of domains contains domains that interfere with other domains (cross-
cuts). These domains are much more difficult to manage. This observation holds
for features, requirements, and components. Consequently, a “good” feature would
correspond to a feature that has no explicit or non-explicit shares with other fea-
tures. This illustrates the importance of decomposition and how the decomposition
made will prescribe if a feature is referred to as “good” or “bad”. The ultimate goal
is of course to find ways to engineer “good features” for all domains and develop

5

systems by composition of “good features” only. Returning to the notion of “good
features”, we see that for functional behaviour there are only explicit connections
between features. A typical “functional connection” between two features is a
component dependency that is explicitly declared. This kind of connections can be
traced and, hence effectively managed [11]. Explicit connections make it possible
to trace inter and intra “feature cause-effect”-relations. Hence, change manage-
ment for connected features is simplified. For features that predominantly define
required qualities, the situation is different. Several qualities are impossible to re-
alize locally and are inherently cross-cutting. This means that even if the feature,
from a functional point of view, is a “good feature”, cross-cutting qualities will
violate the definition of “good”, thus affecting the composability negatively.

One possible path around such problems would be to “factor out” qualities
into independent and orthogonal aspects specifications. Previous work, such as
Composition Filters [12], Subject Oriented Programming [13], Aspect Oriented
Programming (AOP) [14] and the layered object model [15], take the first steps
towards robust techniques for factorisation of cross-cutting features. Still, a lot of
work remains before general techniques that manage design and implementation
of quality aspects are standard tooling for software engineers.

Selecting features during application development begins as soon as the re-
quirements are understood (in fact sometimes even before that). Some features are
selected and “frozen” early in development. Examples of this include low-level
features like operating systems. On the application level, features that are used
in the early phases of the process are abstract (feature skeletons) in the sense that
they capture several designs. The feature-skeletons are far from complete and sev-
eral design decisions remain. As decisions are made, the features are refined, and
become more concrete.

Several authors discuss the connection between a configuration of components
in an architecture and system wide properties that the system exhibits [2, 3, 16]. As
previously mentioned, the difference between emerging, system wide properties,
and functionality is that functionality can be located in a single component within
the architecture (or a sub-architecture encompassing a group of components), the
system wide properties however, are scattered over the system in several compo-
nents, i.e. cross-cutting. Even if we create an architecture with a configuration
that fulfils many of the quality requirements, such as maintainability, there are still
many requirements in this class that need support at run-time. Filman states that
several of quality attributes or “ilities” can be achieved by “systematically control-
ling the inter-component communications” [17]. Szyperski and Vernik make the
same observation, and conclude that, system wide properties in component systems
“require dedicated support outside of the participating components” [18].

The software architecture community has proposed a number of different “tools”
to achieve system quality. Architectural design methods [2, 3], focus on the struc-
ture of the software (product family) architecture and provide toolboxes for criterion-
based evaluations. The idea is to design architectures that, while providing the ex-
pected functionality, at the same time organise the structure in a way that certain

6

system-wide properties are achieved or can be achieved later in the development
process. Another approach is to design in capabilities for performing dynamic re-
configurations in the architecture [19, 20]. In combination with monitoring, these
techniques initiate “state-triggered” reconfigurations. For instance, if the system
load is too high, this triggers a load-balancing component that reconfigures the
system in a way that a system load criterion still holds.

Even though the first “tottery” steps towards systematic approaches for system
quality realization have been taken, there are still many (undiscovered) problems
that remain to be solved. If we scrutinise works in the area of software product
families the majority of problems and issues we find are concerned with com-
monality and variability management, and scoping product families [4, 21]. The
research community has also reported on how these can be better controlled and
managed [22, 23].

Scoping

The development team of a software product family initially tries to grasp
the “market” of their product family. By understanding the context in which
their products will run and additional customer needs, the group defines the
domain specific functional and quality boundaries. The process of decid-
ing what to include and what to exclude is referred to as scoping. When
commonalities are found and isolated, and variabilities defined, the scope
is set. Scoping is not easy and several parameters must be considered. For
instance, software product-families evolve over time so future scope exten-
sions must be accounted for. Diversity in the user group can also cause
problems. Typical problems recognised in requirements engineering reoc-
cur here. To cope with these problems different methods can be applied.
Examination of existing products in a domain, product/feature matrices, and
stakeholder workshops are all usable vehicles towards the definition of a
SPFs scope. A more systematic approach to the problem is captured in the
PuLSE-Eco method [24].

Commonality and Variability

One of the more widely used mechanisms to grasp huge complex problems
is abstraction. Abstraction is a process where some “thing” is described
by isolated aspects important in a specific context. Thus, the basis for an
abstraction is a set of common aspects valid in the domain currently being
abstracted. From a SPF perspective, commonality analysis aims at pinpoint-
ing common features for a family of products. Once the commonalities are
determined, one can start to investigate the differences, i.e. what makes
a specific product unique. The variability of a family is the union of all
these product specific differences. In order to better describe the common-
alities and variabilities within the product family architecture, the notion of
variation points is useful. This opens up a product family architecture and
the result is a more flexible and modifiable architecture. During product

7

derivation, the product engineers select variants and bind these to the appro-
priate variation points. Variation points in the architecture evolve through
three phases, i.e. implicit, designed and bound. Before a variation point
is designed into the system, it is considered to be implicit. When support
for this implicit variation is designed into the system the variation point be-
comes explicit. The explicit variation point is bound, when a specific variant
is chosen. Another dimension for variation points is open and closed, i.e.
modifiable or not. If the time when the variations are bound can be delayed,
and if closed variation points can be reopened, the positive result will be
flexible development were unforeseen events, such as requirement changes,
are more easily handled. Of course such a scheme can introduce other issues
such as coordination related problems when un-tested subsystems are intro-
duced at run-time. This and connected problems can be mitigated if only
components with certified quality are used. Examples of this include the
Microsoft driver signing and non-tainted (open source) modules in Linux.

Our case-study organisations primarily work with systems where the notion
of variation point and binding has moved beyond load-time into execution
time. The controlling “intelligence”, i.e. the mechanisms that govern these
activities in the system, is also improved, thus providing for more complex
and generic variations.

4 Case Study Method

The objective of the case study reported in this paper was twofold.

• Survey the state of practice within different software development organisa-
tions, with an emphasis on the use of dynamic reconfiguration and updating
techniques as a vehicle for achieving flexible quality requirements.

• Identify issues and problems described by the organisations and based on
those, deduce industrially relevant research questions.

We concluded that the best method to achieve this was to combine interviews with
key persons in different software development organisations and document stud-
ies. The case study involves four Swedish software development organisations;
MECEL Automotive Systems, Ericsson Radio Systems (ERA), Ericsson Mobile
Data Design, and ENEA-OSE. MECEL Automotive Systems and ERA are “users”
that use (or would like to use) platforms and product family architectures for im-
proved reuse, ERV and ENEA-OSE are platform providers. At the time of the
study there was no cooperation between the organisations in this area. The inter-
views were open, but a set of prepared questions was used to drive the discussions
forward. The questionnaire we used was divided in four categories, i.e. context,
current use, future use, and vision. The first category aims at collecting general
information, such as type of organisation, products, and the organisations general

8

view on dynamic updating and reconfiguration. For the categories “current” and
“future use”, we discussed issues connected to different phases in a generic devel-
opment process; requirements, analysis and design, implementation, verification
& validation, and maintenance. The interviews were taped and later transcribed.
These transcripts were further analysed. The interviewees provided us with addi-
tional documentation, which was used as a second source of information for the
analysis.

5 Case Study Organisations

Below, we present the individual organisations, the primary non-functional require-
ments they face, the technologies they use, and future challenges.

5.1 Systems engineers - MECEL

MECEL Automotive Systems is an engineering consultancy organisation, mainly
contracting the automotive industry. They have been involved in numerous projects
as system engineers, where they have worked with integration of software and
hardware systems.

Currently, high-availability and fault-tolerance are key qualities in automotive
systems, but recent developments towards “infotainment”-systems being integrated
into vehicles, will require additional support, for instance, flexibility and configura-
bility.

In a development project, MECEL employs their AUTOSOFT method. The
method uses a traditional requirement specification, in the form of a description of
all vehicle functions implemented in software and/or hardware. Beside the func-
tional and non-functional requirements captured in the vehicle function descrip-
tion, AUTOSOFT includes a Life Cycle Cost (LCC) analysis. The LCC support is
crucial when the clients have a focus on overall cost reduction since reduced costs
can be used to increase the margins or lower the price paid by the customer for the
final product. The functional descriptions form the basis for decomposition where
functions are decomposed into sub-functions and a physical decomposition where
sub-systems are identified. The next step is architectural design, which includes
design of software and hardware architectures. This step includes several activities
such as hardware configuration design, identification of sub-function commonal-
ities, allocation of sub-functions to sub-systems, and descriptions of communica-
tion between sub-functions. The architectural descriptions are later used in the
implementation and deployment phases of the process. AUTOSOFT is an indus-
trial strength development process, but MECEL foresees several adaptations that
will be needed when the automotive industry moves towards more functionality in
software. Currently, the process depends on hardware implementations for specific
qualities; fault-tolerance for instance is handled by means of hardware redundancy.

9

Even though the automotive industry of today is somewhat conservative, the in-
creased competitiveness will affect how automotive software is developed. Com-
monplace practice employ shared components (mechanical and digital) between
different manufacturers model programs but software is not shared although it is
not unique. MECEL believes that this situation will change sooner rather than
later. MECEL aims to move towards a more reuse-oriented process. Software
components should be reused, across model programs and manufacturers, in the
same manner as mechanical components. The platform should support “plug n’
play” for both functional and non-functional properties. This will require, besides
improved support for managing the system qualities, extensive work where the au-
tomotive industry and sub-contractors’ agree on specific standards for automotive
software components.

5.2 Application development - Ericsson Radio

ERA develops software for GSM (Global System for Mobile communications)
based networks. The group we interviewed was relatively recently formed, and
mainly used Java technology.

In their application domain, high-availability, including fault-tolerance, scala-
bility and performance are key qualities. The different quality characteristics can
change at run-time, as a reflection of the scalability requirement. High-availability
is supported by dynamic updating. As previously mentioned, another important
property is scalability. If additional hardware is introduced to increase the sys-
tem capability, the system should adapt and new processes could be spawned and
executed on the new hardware.

Scalability, high-availability, and performance are all managed in a similar
manner using the same technique. The technique uses two or more parallel class-
loaders in the virtual machine that executes the application. Each class-loader
is responsible for one configuration of the system. When a new configuration is
needed the responsibility is gradually transferred to a new class-loader instance,
which creates its own class instances. Instances states’ are transferred from the ac-
tive application to the new instance over the serialisation interface provided by the
Java platform. Serialisation provides output and input streams for object informa-
tion. Obviously the serialised information is not always directly interchangeable
between different instances, for instance new and removed attributes must be man-
aged by special code. Finally, when all objects are migrated from the active system
instance the new system instance can be activated.

Currently, the core functionality supporting qualities are implemented in the
application, with limited support from the platform. This reduces the possibility
to reuse application components. Albeit ERA aims to move their development
towards parameterised, reuse oriented development, with more support for quality
realizations in a platform.

10

5.3 Platform developers - ERV

Ericsson Mobile Data Design is involved in the development of systems for packet
based mobile communication. One of their recent products is the GSN (GPRS Sup-
port Node), an important component in the General Packet Radio Service (GPRS)
communication systems. ERV is also responsible for the development of the Wire-
less Packet Platform (WPP), a common platform for the next generation mobile
communication systems, for instance the aforementioned GPRS and the next gen-
eration, the Universal Mobile Telecommunications System (UMTS).

Key qualities in the ERV platforms are flexible software delivery and installa-
tion, load balancing, fault-tolerance by redundancy, and dynamic upgrading.

One important component in the WPP is the Distributed Processing Environ-
ment (DPE). The DPE architecture, depicted in Figure 2 and described here, sup-
ports heterogeneous distributed computing on multiple hardware platforms running
different operating systems. In Figure 2, the boxes represents a networked comput-
ing device, the gray circles depict the operating systems executing on each node.
One of the computing devices is appointed as “Node Control Board” (NCB). On
the NCB most of the DPE logic (NCL) is executed. One node is appointed as the
standby NCB (in Figure 2 depicted by the white triangle). The state of the ac-
tive NCL is replicated to the standby NCL. The NCL and DPE agents constitute a
reflective and reactive architecture. These components are capable of and responsi-
ble for monitoring certain events and based on application and system specific data
performing dynamic reconfigurations. Application developers access the DPE via
an API that currently consists of approximately 100 functions divided into three
categories; System events, Application distribution, and Inter/Intra application sig-
nalling.

The challenges that ERV face are concerned with an improved understanding of
how to design and evolve platforms that support qualities. A better understanding
will support future development and maintenance scenarios.

5.4 Operating system developer - ENEA/OSE

ENEA develops OSE; a message based real-time operating system and additional
support systems for design, test, and administration. The operating system is used
in different domains, e.g. “telecom” applications and automotive industry.

Several applications in these domains have quality requirements like; fault-
tolerance, high-availability, and performance. In order to support development of
systems with these kinds of qualities, ENEA/OSE offers certain services at the
system level that the application programmer may utilise.

OSE is a SPF where each customer selects a set of services that they require
from the system. A conservative estimate of the common parts (commonalities) in
all products is somewhere between 50-90% depending on which hardware archi-
tecture the customer use and features they need. The most important architectural
mechanism is the logical channels for component communication. A logical chan-

11

nel, depicted in Figure 3, is a connector that offers transparent communication
for processes. The mechanism is implemented by means of three different com-
ponents; the Phantom process, the Link handler, and the Hunt process (n.b. not
displayed in Figure 3).

The logical channel mechanism can be used to implement qualities, such as
performance (load-balancing), fault-tolerance, and high-availability (dynamic up-
dating). For instance, if new and modified components are available these can be
initiated in parallel with the old, active components. Data can be migrated and
when the components are in stable states the old components can be deactivated.
Components that would like to communicate with the components “hunt” for a
component and the hunt daemon will redirect the communication to the new com-
ponents. The same strategy can be used to implement other quality attributes, such
as process-migration used in load balancing.

A better understanding of the nature of quality attributes is in the interest of
ENEA. Such an understanding will improve their design and development capabil-
ities and strengthen their position for future system development challenges.

6 Problems and Issues

This section is divided into two subsections. First, we report on our initial find-
ings based on a primary analysis of the material. There we give a more precise
characterisation and classification of our case-study organisations SPFs’. Second,
we identify, describe, and exemplify the identified problems and issues connected
to development and use of product-families and platforms. We also attempt to
identify and discuss the underlying causes for a particular problem or issue.

6.1 Overview

In this section, we present an overview of the characteristics of the cases under
study and issues that we identified as relevant for a broader audience than the indi-
vidual cases. As discussed in the related work section, to the best of our knowledge
these issues have received little attention in research literature. Among others, we
found several interesting problems mainly concerned with variability management
and scoping.

6.1.1 Characteristics

Inter-organisational SPFs

The case-study organisations develop SPFs for other organisations or are
users of such SPFs. We label these SPFs inter-organisational. MECEL de-
scribes a situation where organisations that provide hardware components
also provide accompanying software. This software is later integrated into

12

the “automotive system” in a vehicle. Hardware is usually available in dif-
ferent variants, hence is the software for the hardware components. By def-
inition this software can be developed as a SPF and we arrive at a situation
where the platform developer is outside of the user organisation. ENEA,
with their OSE operating system, and ERV with DPE, also develop plat-
forms that are targeted for use by other organisations. Where existing lit-
erature typically reports on intra-organisational SPFs in large organisations,
we have identified that SPFs provide the same advantages when crossing
inter-organisational boundaries. However, as discussed in the next section,
there are a number of unique challenges that need to be addressed.

SPFs for Qualities in Embedded Systems

The market for ENEA, MECEL, ERV, and (to some extent) ERA is em-
bedded systems. The market characteristics impose certain specific quality
requirements on their SPFs, such as multi-tolerance [25] and real-time char-
acteristics. Distinctive for our case study SPFs are that quality requirements
are the most prominent and important requirements. For instance, the DPE
from ERV have a focus on support for scalable fault-tolerant distributed
computing. OSE from ENEA provides a solid foundation for scalable fault-
tolerant real-time systems. The underlying idea is that other organisations
will use these SPFs and build functionality (maybe as another SPF) on top.
For instance, the DPE will be used by other Ericsson organisations that im-
plements application specific functionality. Thus, where most product fam-
ilies reported upon in literature aim at reusing functionality, the SPFs in our
case study organisations are predominantly used to provide quality attribute
support.

SPFs and Dynamism

Finally, we note the usage of dynamic reconfiguration to implement qual-
ity requirements such as scalability, performance, and availability. This is
demonstrated by the system descriptions provided in Section 5. But the
packaging of dynamic architecture aspects in SPFs and the implications for
development and use of SPFs to which this lead are, we believe, of great
interest. In our experience with these and other cases, we have seen that
with increasing experience with and maturity of software product family
approaches, there is a strong tendency to bind variation points at later stages
in the life cycle, ultimately at run-time.

6.1.2 Issues

Below we introduce and briefly present the identified issues. Each issue will be
described in more detail in Section 6.2.

13

Evolving Quality Requirements

This was presented as a key problem by the platform vendors ENEA and
ERV. It occurs when the scope of a quality-platform is extended as part of
platform evolution. The cross-cutting nature of qualities makes it extremely
difficult to introduce support for additional qualities with preserved service
abstraction levels. A platform supports a set of qualities and provides plat-
form users with high-level services that simplify integration of services in
user applications. An expansion where support for additional qualities are
included requires major revisions to the platform design or “lowering” the
support level, i.e. leave the integration (coordination) aspect of quality im-
plementation to the platform user. The core problem is how to expand a
quality platform with preserved support levels for current platform users.

Service Level for Quality Requirements Support

A second problem, also caused by evolution and identified at both ENEA
and ERV is the situation where some customers require improved support,
i.e. the platform should take on more responsibility from the application in
terms of control and integration. Here, platform developers have to design
in more control logic into the platform. However, this leads to problems
when other applications that use functionality on a lower service abstrac-
tion level (as provided by previous platform versions). The organisations
both stressed that this is something of a Catch-22. One aspect is to meet
the new expectations from customers by providing high-level support and
at the same time allow other users to continue working with a low-level
interface. The core problem is how to make applications, working on differ-
ent levels, coexist on a platform without causing behavioural problems with
unexpected consequences.

Dynamic Quality Footprint

All case study organisations put quality attributes at the top of the list when
we asked why they employed or utilised dynamic architectures. Using the
words of ERV: “Attributes like availability, scalability, and modifiability
all come hand in hand with a system that can change its configuration”.
ENEA expressed a similar motivation while the user organisations ERA
and MECEL stressed flexibility. All organisations added to this, when they
discussed how quality attributes might change at run-time. For instance,
changes in the execution environment like hardware changes will affect the
quality attributes of an application. They all believed that there were no
royal-road solutions available when it came to management of dynamically
changing quality attributes. The solution that all discussed was to utilise
dynamic architectures making their platforms and systems adaptable. In
that way, the platform or system could be tuned so that it meet the changed

14

quality attribute levels. The problems connected to this is how to manage
quality variation points, how to express quality attributes and their interre-
lationships, and the lack of standardised, reusable descriptions of how to
design evolvable architectures.

Quality Support Mismatch

Another issue expressed by both users and providers where the apparent
threat of different kinds of mismatches. One can divide the mismatches into
intra and inter platform mismatches. Intra platform mismatches represents
mismatches between applications, executing in parallel, that utilise support
from the same platform. Inter platform mismatches comprise mismatches
where two or more platforms, supporting the same or different quality at-
tributes fail to integrate. The first category is a result of shortcomings in
variability management and scoping while mismatches in the second cate-
gory can be deduced from integration problems such as conflicting or miss-
ing intra platform coordination (in fact this is a scoping problem). The so-
lution brought forward, and to some extent implemented in some cases, was
more flexible and extendible platforms where users configure (add, remove,
and modify) quality support in the platforms and provide tailored integration
support when more than one platform is used.

Flexibility & Extendibility of Quality Support

This issue was highlighted by all cases as an extremely important devel-
opment for future quality platforms. The two keywords reappeared in all
solution discussions connected to the issues listed above. This is an impor-
tant development for providers of platforms as well as for platform users.
From the provider horizon it is important since it will simplify the process
of tailoring platforms for specific customers, hence shorten lead times. It
will also broaden the customer base since customers within certain bound-
aries can modify the platform behaviour adjusting it and adapting it for their
particular application domain. Part of the problem here is of course the dif-
ficulty of modelling and designing an “open scope” platform that still guar-
antees certain behaviours in every situation. Part of the solution to prob-
lems here can be found in the area of object-oriented frameworks [8], where
flexibility and extendibility are key concepts. Still, resolving the complex
dependencies among different quality attribute implementations, due to the
cross-cutting nature of quality, remains to be effectively addressed.

6.2 Identified Problems and Issues

In this section, we provide a detailed description of the issues that were briefly
presented in the overview section above. We use a template based on five differ-
ent parts for the presentations. First, we assign the problem to a domain, either

15

Provider or User. Some of the problems presented apply to both the user and
provider domain. The second part, the description, gives a generalised view and
more company and product specific details have been abstracted away. The de-
scription is followed by an example taken from one of the case study organisations.
In the fourth part we discuss the primary causes of the problem described. We
use a simple classification scheme for causes, since there are multiple cause-effect
relations present. This classification groups causes by technical, process, and/or
business. The rationale for this classification is to more easily describe the com-
plexity hiding underneath the problem surface. The fifth and final section discusses
existing and proposed solutions (when present) to a particular type of problem.

Title: EVOLVING QUALITY REQUIREMENTS

Domain: Provider

Description:

As a platform developer, a primary goal is to expand the market and in-
crease the number of potential platform users. In order to support a wider
range of applications, platform developers need to improve existing sup-
port for qualities and add support for new qualities. The problem is that a
specific quality can hardly ever be regarded in isolation. Thus, when sup-
port for new qualities is added, the platform must take on the responsibility
and integrate this with existing quality support in the platform. This often
becomes a major problem that requires trade-off decisions in order to be
resolved. Consequently, the resulting platform provides a more restricted
support for combinations of qualities. In Figure 4, we illustrate this phe-
nomenon graphically. A platform contains support primitives for a set of
quality attributes and some coordination functionality. During evolution,
support for new qualities is added and the platform scope expanded. Thus,
new products can utilise the platform. In Figure 4, the evolved platform
(Platform´) includes support for the quality attribute QA4. But the expan-
sion generates a “rubber-band effect” where the support levels (represented
by the interfaces in Figure 4) for different qualities must be lowered and a
“semantic gap” is introduced. This “gap” requires extensive redesign and
re-implementation of applications designed for previous platform versions.
The “semantic gap” emerges when the platform no longer provides the high-
level support that integrates and coordinates the behaviour of several quality
attributes. Instead only fundamental or restricted support with less integra-
tion is provided; leaving integration and coordination issues for the platform
users to solve (illustrated by a smaller coordination rectangle in the right-
most picture in Figure 4).

Example:

This issue as was identified as a risk (and later resolved) in one of the case
study organisations. Hence, we cannot provide an example where this ac-
tually occurred. But still the organisations believe that this is an important

16

issue. Therefore, we present the rationale for the design decisions in the
ERV DPE system, which illustrates what would have happened if ERV had
chosen a different approach. The designers of the DPE at ERV identified
this problem early in the design process. They faced a difficult design deci-
sion of whether to initially provide a toolbox with a set of low-level prim-
itives supporting qualities or a platform with more integration support for
quality aspects included. If they chose a toolbox approach, the feeling was
that leaving the integration aspect of quality support entirely to the platform
users, gave application developers “too much freedom”. On the other hand,
they realized that they didn’t have sufficient knowledge about platform us-
age. So, addition of support for other qualities was a likely development in
future platform evolution. The outcome of this philosophical reasoning was
to do two things. Initially they narrowed the scope of the platform support-
ing fewer quality attributes and lowered the support and integration level.
This initial trade-off made it possible for future evolution of the platform as
both the domain and platform use became better known.

Causes:

Business — Different business considerations contribute to this issue. The
foremost are adjustments to different customer categories. A platform de-
veloper needs to provide a flexible platform to increase the number of po-
tential users. According to ENEA and ERV, customers can roughly be dived
into two categories; low-end and high-end. Of course there also exist users
that would be categorised as somewhere in between these categories. To
summarise their description of these categories, low-end user prefers high
level support, since their platform use is circumscribed, while high-end user
is much more demanding. When low-end users occasionally use it they
need simple access to for instance default behaviour and nothing else. The
high-end users on the other hand typically develop a system that is heav-
ily dependent on behaviour provided by the platform. They also require full
control of this behaviour so that they can fine-tune the platform for a specific
application using low-level primitives.

Technical — The foremost technical problems are all connected to the knotty
nature of software qualities. We previously discussed cross-cutting qualities
and quality domains not being “good domains” [10]. This means that when
a new quality is added and integrated into a platform it typically require re-
design of the platform internals. Designers need to approach this problem
cautiously to guarantee behavioural consistency for other qualities and with
previous platform versions. Adding a single quality to a platform also result
in an explosion of new probable quality configurations. In order to pro-
vide platform users with means of configuration the APIs require redesign,
adding support for configuring the newly added quality attribute(s).

17

Existing Solutions:

None of the case study organisation that expressed this concern believed
that there was any, generically applicable, solution to this problem. One
approach is of course to initially lower the support levels and narrow the
platform scope, as ERV did. But sooner or later platform developers will
face problems similar to what we have described here. The inherent com-
plexity and number of facets of this problem make it difficult, with current
state-of-the-art technology, to bring forward methodologies that make this
issue tractable.

Title: SERVICE LEVEL FOR QUALITY REQUIREMENTS SUPPORT

Domain: Provider

Description:

This issue is also related to the evolution of quality attribute platforms. The
previous discussion was about extending the support provided by a quality
platform introducing support for additional qualities. This issue focuses on
another evolutionary aspect, improved support for existing qualities. Better
understanding of the problem domain and how applications use the plat-
form, together with technical innovations, allow developers to find ways to
improve and simplify the use (interface) of the quality support services. Im-
provements include simplified access to the behaviour and more quality co-
ordination integrated in the platform. Problems surface when applications
that use a new quality support interface, run in conjunction with applica-
tions that use earlier versions of the platform interface. This problem is a
variant of the well-known “interface-evolution” problem, addressed in soft-
ware engineering for decades. Here, the “client-interface-implementation”
dependencies are related to support for quality attributes, which adds a twist
of complexity. If the level of abstraction is raised, providing more high-
level support, an opaque barrier can emerge which does not allow for fine-
grained control of the quality related behaviour. What happens is that the
quality scope of the platform becomes more restricted when the flexibility
is limited. Applications that, for some reason, need to diverge from the
pre-declared behaviour in the evolved interface and integrated coordination,
must find “workarounds” for these problems that usually involve violations
of the intentional layering and encapsulation.

We illustrate this problem in Figure 5. Here, two applications have been
designed and developed for an old version of the platform (these are de-
picted by the two gray diamonds). The third application, depicted by the
white diamond, has been developed for the latest release of the platform. If
the two application categories, i.e. systems built on the new and old plat-
form variant respectively, should run simultaneously using the same plat-
form version there are two options at hand. The applications based on the

18

old version could be redesigned and re-implemented to adapt to the changes
made in the platform interface. Alternatively, the platform can open up its
interfaces or provide alternative interfaces that reflect the interfaces of the
earlier platform releases. These provide openings for the applications to
work directly against lower-level primitives supporting different quality at-
tributes. If that procedure succeeds new problems arise. The behaviour of
the platform cannot be guaranteed. The platform takes care of certain ac-
tivities related to quality attributes (e.g. process scheduling), which must
be coordinated at the platform level. If some application bypasses the high-
level interface and directly accesses the platform, different problems may
surface. For instance, coordinating the high-level behavioural mechanisms
provided in the new version with user controlled behaviour implemented
with low-level primitives is, in the general case, insurmountable. User con-
trolled behaviour will typically interfere with the platform functionality and
can cause unexplainable misbehaviour immediately or even worse further
down the line. Secondly, bypassing the intentional layering will break the
design that was intended to leverage other qualities, such as maintainability,
hence making future evolution more difficult.

Example:

To exemplify the difficulty of promoting support for quality attributes, we
describe the situation at ENEA and their approach to resolve (avoid) the
problem. ENEA/OSE is primarily an operating system family with real-time
properties. OSE systems are used in different domains, such as telecommu-
nication and transportation. Software systems in these areas often have a
high-availability requirement. OSE has system services, which can be used
to dynamically modify systems, i.e. dynamically update and migrate com-
ponents. They have chosen to confine their support for this type of activities,
providing only basic mechanisms, and leave it to applications to handle it.
This is due to intricate problems with conflicting requirements. One of the
more complex problems is how to perform updates and still retain the real-
time property. For instance, in order for the system to know when to sched-
ule an update, it must predict how much time this update will consume. It
is obviously difficult for a platform to take on this kind of responsibility, for
any type of application. By avoiding the inclusion of advanced control logic
for updates ENEA leaves the responsibilities to its end-users. The intricate
problem of providing flexible, easy to use and still dependable services is
left unsolved due to its complex nature.

Causes:

Business — Among several business considerations that cause these kind
of problems are “market diversity” and “lack of market communication”,
the most prominent. It is extremely important to keep in mind that “not all

19

developments are improvements for all customers”. A company developing
a platform for an external customer must consider all customer groups and
their requirements, before changing the platform interfaces. If not, some
group will fall outside the platform scope with the result that the customer
potentially stops using the platform. If the customer is internal, the causes
are more organisational than business and should be more easily managed.
Still, we use the word “should”, though we know by experience that it could
be even more difficult to get acceptance from in-house customers for radical
changes and, from a user perspective, response on detailed product specific
requirements.

Technical — The technical causes for these problems are connected to the
fact that the cross-cutting nature of quality attributes. If the support should
be improved, more coordination has to be built-in in the platform. This ac-
tion will limit the flexibility provided by the platform interface. The lack
of flexibility relates to the many possible versions and configurations that
different quality attributes in combination may cause. Compared to func-
tional features, for instance a file dialog box in a graphical user interface,
the variability for a combination of quality attributes is more or less infinite.
The exponential growth regarding the implementation of quality attributes
comes from the inherently bad cohesion of quality attributes in software
systems. The problems are analogous to those found when developing ap-
plications with 4th-generation languages. As long as developers stay inside
the predefined scope of the language, the system behaves as expected. But
as soon as they step out of the scope, several problems occur.

Existing Solutions:

Some organisations mentioned the possibility to provide several different
APIs that provided different support levels, but they believed that this would
introduce several problems during maintenance and still not solve the inte-
gration problem, making systems using different support levels run in paral-
lel on the same platform. A variant of the multi-levelled API is of course to
keep the support at low levels and provide special packages (applications)
with more advanced support. This is the approach advocated by ENEA that
provide separate tools that provide high-level support for different attributes
while the API is kept at a lower level.

Title: DYNAMIC QUALITY FOOTPRINT

Domain: Provider, User

Description:

The idea of a dynamic quality footprint is a conclusive statement founded in
different problems expressed by several of the case study organisations. It
emerged during the discussions and all organisations contributed to different

20

aspects of this formalisation. When all of them are using slightly different
terminology and focus, this issue is a reduction of their statements. The
notion of a “dynamic quality footprint” is, to the best of our knowledge, a
variability type not identified earlier at all. Several situations require modifi-
cations to the quality footprint, for instance, as depicted in Figure 7, changes
in the execution environment or changes of the systems operational mode.
To illustrate this specific type of product-family, we use an example. Cre-
ate an n-dimensional space where each dimension corresponds to one non-
functional requirement for an application. Figure 6 depicts a Kiviat diagram
of the multi-dimensional “quality space” and we see that when the “level” of
each quality is set, we have a unique footprint, which represents the “qual-
ity of this system” at a given point in time. During execution the different
qualities may vary along different axis, forming new footprints. A platform
providing support for certain qualities, must provide for the specification
of these dynamically changed qualities. Specification includes declaring
when a change should take place and definition of a new quality footprint
for the application. When a platform does not support a dynamic quality
footprint, application developers implement it at the application level. Still,
the platform must provide sufficient reconfiguration primitives for recon-
figuration at runtime. For instance, if there is a scheduling mechanism in
the platform, the scheduling strategies must be modifiable and changes to it
must be directly reflected in the behaviour. The problem in this case is that
these implementations are scarcely anything else than suboptimal. Several
other problems arise when direct manipulation of the platform is moved to
the application. Usage that circumvents the platform interfaces introduces
maintenance problems when the platform evolves. It is also difficult for
platform providers to perform exhaustive testing of the platform if its exact
use is not known at the time of development.

Example:

The systems produced by ERA are designed to handle continuous operation.
New pieces of hardware and software can be introduced dynamically. As the
system evolves, the quality requirements change. For instance, new hard-
ware affects performance-related load-balancing activities, which elevates
thresholds that trigger such activities. The contrasting event, i.e. hardware
failure, also requires dynamic changes to qualities. Currently there is little
or no provision for this in the platform. Consequently, developers are forced
to implement this at the application level.

Causes:

Business — There are some business related causes for this kind of prob-
lems. Most often they can be inferred from risk reduction activities. For in-
stance, instead of including a rather complex mechanism such as “dynamic

21

quality footprint”, it is better to provide a sufficient set of mechanisms in
the API and sufficient openness in the system. This allows platform users
to include limited support for dynamic changes to the quality footprint. An-
other important factor is, of course, financial considerations. Full support
for dynamic quality is expensive both in terms of resource usage and money
and not all users are willing to pay the associated costs.

Technical — The technical difficulties are numerous. For instance, there is
no generally applicable specification method for quality requirements that
can be used at run-time. This can be deduced from the fact that most quality
attributes are not discrete, i.e. difficult to parameterise. Other problems lie
in the area of dynamic reconfigurations. For a large group of users, platform
providers must build a “generic” reconfiguration engine, supporting moni-
toring techniques that measure the quality attribute, a agent/process/daemon
that verifies that quality attribute throughout operation, a mechanism to pre-
dict the quality attribute effects of a configuration change and a technique
to perform configuration changes at run time [5].

Process — There are also some causes that can be deduced to the develop-
ment process. Dynamic reconfigurations are not a “standard” design con-
sideration and by far not every design process includes this option. Hence
it is extremely difficult for platform developers to provide a mechanism that
suits all users. Inclusion of a mechanism will impose certain design direc-
tives and restrictions.

Existing Solutions:

We have previously discussed realization techniques used to implement spe-
cific qualities in a system. Many state-of-the-art systems allow for some
(limited) change to information controlling the application quality, at least
for a restricted domain. For instance, the DPE system from ERV utilises ex-
ternal information to calculate optimal distribution of processes. When new
hardware is introduced this is taken into account when new distributions are
calculated. What we see is that specific solutions can be developed, but in
a product family context, reusability is important, hence more configurable
solutions are desirable.

Title: QUALITY SUPPORT MISMATCHES

Domain: Provider, User

Description:

The basic definition of this problem is that two or more qualities may con-
flict in some cases, but are independent of or reinforcing each other in oth-
ers. If it’s difficult to predict when and understand why this happens we
have a problem at hand. We have found two causes for this kind of prob-
lems. One occurs when two applications, executing on the same platform

22

instance, require different quality behaviour, the second occurs when an ap-
plication uses two platforms that have problems with coordination of their
quality behaviour. In some situations an application requires a support level,
which lies in between two levels supported by the platform. This requires
that application developers make a trade-off decision, either to bring it one
level up or one level down. This may affect the realization of other system
qualities, hence resulting in a redesign of the system. The contrasting ap-
proach, with a user organisation that utilises more than one product family
(platform) for a product, potentially from different vendors or other organ-
isational units, supporting different quality attributes, will cause problems
and raises many questions. None of the case study organisations faced this
situation but both vendors and users expressed that this would add complex-
ity to “an already complex world”. Examples include integration problems
and more fundamental problems such as conflicts between two quality real-
izations present in two different platforms.

Example:

As an example consider the ERV DPE-platform that supports fault-tolerance
and performance. A possible situation is that one product in the family re-
quires limited support for fault-tolerance, while another requires advanced
fault-tolerance techniques with exhaustive checking at run-time. For the
first application, the platform works fine as it only requires limited sup-
port from fault-tolerance mechanisms. The second application though has
higher demands on the platform requiring broad support for fault-tolerance
and performance. If the platform cannot handle such a situation it fails in
supporting the second. An example of situations where integration mis-
matches can appear is when an application that utilises functionality from
two SPFs, one supporting fault-tolerance and performance (scheduling and
load-balancing) and one supporting security. Both platforms impose special
processes that control specific aspects of a running system and both require
a specific scheduling model, say threads and co-routines respectively. Here,
an absolute requirement on the first platform would be flexibility in terms of
support for different process models. If this is not met, there is a mismatch
between these two platforms and they cannot be used in conjunction with
each other. The second example is a direct quality mismatch between the
two platform implementations. At first it appears to be no integration mis-
matches between two platforms. The problems appear first when platform
users try to trade-off between two qualities supported by different platforms.

Causes:

Business — Among the causes for this class of problems we find some
that are related to different business considerations. If one considers the
process and technical causes below we see that resolving these costs a lot,

23

hence make the platform more expensive. Integration with platforms from
other vendors was the second facet of this issue. Aligning platforms so
that they more easily will integrate with other vendors’ platforms also cost
more and will affect the overall product cost. It will also require major
standardisation efforts if one should reach a degree of openness so that this
problem is removed or at least diminished to a manageable level.

Process — From a process perspective, this problem is founded in vari-
ability management and scope evolution, where platform providers have
not identified all application specific, quality attribute characteristics, when
scoping the platform. This is yet again a problem connected to the difficulty
of providing precise parameterisations and hence specifications of quality
attributes. The second part is also a scoping issue. The platform is con-
sidered in isolation (with only client applications in mind), one does not
consider cooperating platforms or even worse, competing platforms, when
setting the platform scope.

Technical — Obviously the technical causes are numerous. If we consider
the first category of mismatches, where one platform has difficulties with
supporting two applications with different quality requirements is also con-
nected to the quality behaviour coordination. As the problem is described
above, it is the difficulty of supporting two quality models (levels) that is
the core issue. This is mainly due to the fact that such capabilities require
more coordination support, hence the implementation will be more complex
to engineer.

For the inter-platform coordination problem, the normal situation is that one
platform is unaware of the other platform. This unawareness makes it diffi-
cult (impossible) to achieve full flexibility and maximum configurability of
both platforms since that would require two, fully orthogonal, platform im-
plementations with absolutely no side effects what so ever. If a platform is
aware of another, coordination is required. Coordination aims at achieving
orthogonal support for the different quality attribute behaviours supported
in different platforms. By intuition this would be more easily achievable
if it is different quality attributes (non-related) that should be coordinated,
compared to a situation where two different implementations supporting the
same or related quality should be coordinated.

Existing Solutions:

Solutions to the mismatch problems discussed above can certainly be found
in several deployed systems. With hands-on integration, adapting platforms
or applications one can achieve an acceptable level of integration, where
applications co-exist with other applications on the same platform or where
two or more platforms work together. But still, in this setting (product fam-
ily), reuse is a major criterion and in order to simplify adaptation/integration

24

of applications and platforms more flexibility would be extremely valuable.
Still there is no general solution to be found around the corner and we prob-
ably have to accept the fact that we cannot provide something that supports
everything always. Still we believe that major advances can be made with
relatively little effort. Careful and thought out designs that just don’t fo-
cus on the particular technology (quality) to be supported, but also focus
on (soft) criterions like reusability and adaptability will change the situation
considerably.

Title: FLEXIBILITY & EXTENDIBILITY OF QUALITY SUPPORT

Domain: Provider, User

Description:

Flexibility and modifiability are two important qualities for any SPFAs [2].
In our study we have found that inter-organisational development of plat-
forms introduces an additional requirement, user-side modifiability. Design
for modifiability and evaluation of modifiability have been discussed ear-
lier from a platform developer point-of view [26]. We would like to extend
these discussions from the perspective of a platform user. Flexibility and
extendibility are key concepts for user-side modifiability. In the previous
presentations of issues, a common theme is that platforms only provide par-
tial support for a specific quality attribute. The platform user is interested in
extending and/or adapting the support provided by the platform. A possible
extension could be replacement of strategies, such as scheduling algorithms.
Beside the possibility to extend the platform behaviour, the platform must
provide possibilities for users to configure the platform, for instance using
parameterisation or hotspots.

Example:

A tentative example for this is the request for plug-and-play qualities ex-
pressed by the MECEL case. Their situation with a responsibility for inte-
grating systems from multiple hardware manufacturers delivering products
to different car manufacturers is currently a difficult task to manage. Making
software from multiple producers work together from a functional perspec-
tive and on-top of that deliver the expected quality is currently managed
by the process developed and used by MECEL. The work that this process
prescribes is time-consuming and requires trade-offs. From a developer per-
spective a higher degree of flexibility in the later parts of the process would
introduce more possibilities (design space extension) in the earlier phases
and thus reduce the number of trade-offs made early in the development.

Causes:

25

Business — We have identified two major business considerations in our
material. From a business perspective development cost is of course an
important decision parameter and introducing hot spots where end users
can configure and/or modify a platform is expensive. The second more
controversial cause (at least from the developer side) is that many developers
sell consultancy services for their platforms and the introduction of end-user
configuration could kill (or hurt) a goose that lays the golden eggs.

Process — From a process perspective one can identify some causes for this
issue. First consider scoping, how to scope a modifiable platform is not ob-
vious. Since end users can modify both common parts and variable parts it
will be even more difficult to set the scope for a platform, compared to the
current situation. Other causes expressed by the cases are the lack of under-
standing and standardisation. From a developer perspective it is extremely
difficult (impossible) to predict which parts that could be targeted for mod-
ification and/or configuration by end users. The lack of standardisation and
hence understanding also has implications. Since modification of platform
behaviour is a complex task one has to certify in some way that the initial
developer and the end user developer have a common terminology and un-
derstanding of concepts used in a platform if it should work in a general
setting.

Technical — We identify two technical considerations that limit the pres-
ence of end user configurability. First, the cross cutting nature of qualities
make it difficult to provide suitable interfaces for end users where the be-
haviour can be modified/controlled. The second consideration is concerned
with overall platform behaviour. Some cases in the case study described a
situation where behaviour of a platform most be certified. In certain do-
mains it is prohibited to use, hence market, software that has not passed an
extensive certification process. This is obviously a severe strike on the idea
of end-user configurability.

Existing Solutions:

The systems in this study, all provide some user side configurability. In most
cases we are talking about a simple parameterisation that offer a possibility
for modest modification of platform behaviour. The issue here is about tak-
ing end-user modifiability to another level providing provisioning for more
advanced and complex adaptations and modifications. Obviously the in-
troduction of these capabilities is a complex task that requires thought-out
designs and implementations of platforms. Providing these capabilities in a
platform implies that the scope of a platform instance is to some extent con-
trolled by a user. This is an idea similar to the one of object-oriented frame-
works. In this context it would be a configurable framework-like platform
with open variation points were platform users could configure or plug-in
application specific support for and coordination of qualities.

26

7 Discussion

Above we have presented and described several problems and issues present in our
case study organisations that we believe require more investigation. The objective
of this section is to generalise problems and issues and bring forward a set of re-
search topics for SPFs used as the facilitator for quality attributes, in the form of
a set of research questions. Below, we recapture the specific characteristics of our
case study organisations; SPFs as a vehicle to achieve qualities in embedded sys-
tems, development of inter-organisational SPFs, and SPFs that employ dynamism
and relate these to well-known SPF concepts commonality and variability analysis,
and scoping.

Software Qualities

Identification of commonalities and variabilities for two or more products
has by tradition a focus on core functionality. This is also true for scop-
ing. Introducing the concept of “feature” puts the important qualities more
into focus, but we believe that this is not sufficient in order to identify all
kinds of commonalities and variabilities. New interesting, earlier undiscov-
ered problems would probably surface if we study non-functional proper-
ties. What are the commonalities and variabilities in an SPF from quality
point-of-view? Inducing from a comparison of functional variation points to
quality variation points, we should find a similar cross-cutting phenomenon
that appeared when we studied quality realizations in isolation. Even though
a local design decision, say setting performance criterions, may be dressed
as a single variation point, the cross-cutting tells us that this decision will
impact several other features.

Another issue is how to specify variability? What is quality variability, and
what happens if we extend binding of variation points beyond load-time
into execution time, i.e. leave certain variation points open so that the can
be bound (closed) or rebound at run-time?

Other problems connected to commonality and variability analysis, from the
quality point-of-view, include traditional specification issues such as pre-
ciseness. Functional specifications are discrete in the sense that either a
function (or some defined variant of this function) is included or not. There
are also dependencies among functionality where a specific function can
require that another function is included or is excluded. Compared to func-
tional specifications, qualities do not adhere to the simple classification, “in-
cluded” or “excluded”. Instead specifications express the importance of a
quality and threshold values that define the boundaries where the quality
requirements are meet or violated. A quality specification may also vary
depending on other qualities and external parameters. One usable technique
to capture external dependencies and its connections to the system quality
footprint is to use operational profiles [27]. Operational profiles provide for

27

modelling of different system modes and consequently the systems variable
quality footprint.

Given the body of problems presented above, we come to a conclusion that
identifying commonalities and variabilities at the “software quality level” is
much more difficult than “pure” functionality, hence scoping of platforms
for realizations of qualities is extremely difficult. Currently we have seen
no method or technique that sufficiently supports proper analysis of quality
attributes with respect to commonality and variability. We believe that this
would be valuable for SPF-architects involved in all types of development
projects, not only the “quality-platforms” covered in this case-study.

Inter-organisational SPFs

In this study, we have seen examples of SPFs developed for an “off-the-
shelf” market. Earlier works on SPFs have shed little or no light on prob-
lems appearing when the “customer” is another organisation. In common-
ality and variability analysis the key question is how to identify common
and deviant parts. How can this be carried out in a controlled setting, when
the potential users and sometimes domains are not known in advance? Be-
side the communication related problems appearing when direct, in-house,
communication is not possible, there are other, possibly more complicated,
problems present. When a product is developed for the “market”, not all
customers are known on beforehand. Hence, not all products that will use
the platform and their domains are known. Even though the situation de-
scribed above cause problems, some of the platforms in our case study are
developed for and successfully used by out-side organisations. One impor-
tant factor that makes this possible is the tight interactions between develop-
ers and potential users. The user organisations are almost always as skilled
as the developing organisations. Another important factor is domain ma-
turity. Many quality domains are mature and well known. This simplifies
commonality and variability analysis, and product scoping, hence support-
ing the development of more generic solutions. Still we have seen many ex-
amples of typical use and evolution patterns where both users and providers
would like to see much more flexible and configurable platforms. Here we
get two competing requirements, openness (flexibility) of a platform versus
the platform scope. Developers prefer a fixed scope with little or no flex-
ibility, since this will require less complex implementations. Users on the
other hand, sometimes prefer tailored platforms for a specific application
and sometimes off-the-shelf configurable platforms. Here business consid-
erations come in to play. Is it worthwhile to pay for a tailored platform or is
an off-the-shelf product sufficient?

SPFAs that employ Dynamism

28

The initial objective for our case study was to investigate development and
use of a special variant of SPFs, namely SPFs that employ dynamic architec-
ture. In terms of features this means that both the configuration (availability)
of features and the quality constraints for these features vary at run-time.
Another important characteristic for this type of SPF is that the underlying
architecture also is dynamic, i.e. it is reconfigured at run-time. Reconfig-
urations are used as an implementation technique for feature availability
and qualities. Dynamism has been studied earlier but not directly in the
context of SPFs. We clearly see a lack of capabilities in handling espe-
cially platform variability when the system opens up for dynamic changes.
An important remark is that dynamic architectures facilitate both what we
call “anticipated dynamic variability” but also unanticipated dynamic vari-
abilities. The dynamic variability is anticipated during development and
the system is designed with these variability mechanisms in mind. In the
plug-in case, typically a “plug-in capability” (feature) is selected during de-
velopment. Unanticipated variability can be managed by a dynamic updat-
ing system providing provisioning for dynamic software evolution [5]. For
some types of systems it is impossible to anticipate all dynamic variabilities
during development.

In this area we see immense amount of work in the future. First and fore-
most a well-defined and clear theoretical framework for dynamic SPFs is
needed. We need to define exactly what we mean when we use “dynamic
variability”, dynamic feature sets, feature evolution etc.

8 Conclusions

In this paper we have presented a case study of four Swedish software companies.
The focus of the study is on development and use of dynamic SPFs. The contribu-
tion of this paper is that new and interesting issues and research questions revealed
by this investigation and, secondly, an in-depth analysis of issues connected to
commonality, variability, and scoping. Open issues and research areas identified
and discussed include

1. inter-organisational development of software product family

2. scoping and variability management for quality attributes

3. product family architectures that employ dynamism

We have also demonstrated how the issues above relate to variability management.
One interesting result is why the participating organisations chose a platform ap-
proach when developing their software. The primary reason was not, as expected,
shortened lead-time and better reuse. Instead all expressed that platforms were
a convenient technique to support specific quality attributes, e.g. maintainability,

29

high-availability, performance and fault-tolerance, in an application family. In our
analysis, we have found that several of the issues can be related to the absence of
a method that provides techniques for scoping SPF quality, including support for
proper analysis of quality attributes with respect to variability and commonality.
Several issues are also related to the lack of adequate specification techniques that
provide support for precise and concise specification of quality attributes. Future
developments in these two areas could make the processes of developing and us-
ing quality platforms easier as platforms will be easier to build configurable and
easier to tailor from the user point-of-view. Finally the third issue, concerned with
dynamic variability. At present the concept of dynamic variability is by far not
sufficiently explored. More investigation is needed in order to understand its ap-
plications and consequences. The problems connected to quality attributes and
variability discussed above obviously complicates scoping. Not only do we need
to address functional scope but also the non-functional scope of an SPF.

The generality of a study like this can always be questioned, since the num-
ber of organisations investigated is small. For instance it its difficult investigate if
all problems connected to different quality attributes are general or specific to the
combinations our case-study organisations face. Therefore, future work in this area
involves further investigations where we will attempt to strengthen the argumenta-
tion for the problems identified. We also plan to study how variability management
can be improved for non-functional requirements and, more in-depth, study of the
dynamism aspect and how this is managed in the architectural design process.

9 Acknowledgements

We would like to thank the people at MECEL AB, ERV in Gothenburg and ERA
and ENEA/OSE in Stockholm for their participation in this case study. This ma-
terial is based upon work sponsored by the Swedish National Board for Industrial
and Technical Development (NUTEK), Swedish Agency for Innovation Systems
(VINNOVA), Växjö university and the ECSEL program at Linköping university.

References

[1] IEEE-Std-1471-2000. IEEE recommended practice for architectural descrip-
tion of software-intensive systems. 1471-2000.

[2] J. Bosch. Design & Use of Software Architectures - Adopting and Evolving a
Product Line Approach. Addison-Wesley, 2000.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 1997.

[4] J. van Gurp, M. Svahnberg, and J. Bosch. On the notion of variability in
software product lines. In Proceeedings of WICSA 2001, August 2001.

30

[5] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-Based Runtime
Software Evolution. In Proceedings of the International Conference on Soft-
ware Engineering 1998 (ICSE’98). ACM, ACM-Press, April 1998.

[6] M. D. McIlroy. Mass produced software components. In Software Engineer-
ing, Report on a conference sponsored by the NATO Science Committee.

[7] D.L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, 1976.

[8] R.E. Johnson and B. Foote. Designing Reusable Classes. Journal on Object-
Oriented Programming, 1(2), June 1988.

[9] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-functional Require-
ments in Software Engineering. The Kluwer international series in Software
Engineering. Kluwer Academic Publishers, 2000.

[10] J.O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,
2000.

[11] M. Lindwall. An Empirical Study of Requirements-Driven Impact Analysis
in Object-Oriented Software Evolution. PhD thesis, Linköping University,
1997.

[12] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting
object-interactions using composition-filters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Object-based distributed processing, volume 791 of
LNCS, pages 152–184. Springer Verlag, 1993.

[13] W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. In The eighth annual conference on Object-oriented programming
systems, languages, and applications (OOPSLA’93), pages 411 – 428. ACM
Press, Sep. 1993.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP’97, Lecture
Notes on Computer Science, 1997.

[15] J. Bosch. Layered Object Model - Investigating Paradigm Extensibility. PhD
thesis, epartment of Computer Science, Lund University, Nov. 1995.

[16] M. Shaw and D. Garlan. Software Architecture, Perspectives on an emerging
Discipline. Prentice-Hall, Inc., 1996.

[17] R. E. Filman. Achieving "ilities". Presented at the OMG-DARPA-MCC
Workshop on Compositional Software Architectures, January 1998. Avail-
able at: http://www.objs.com/workshops/ws9801/papers/.

31

[18] C. Szyperski and R. Vernik. A case for tired component frame-
works. Presented at the OMG-DARPA-MCC Workshop on Com-
positional Software Architectures, January 1998. Available at:
http://www.objs.com/workshops/ws9801/papers/.

[19] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Lan-
guage. IEEE Transactions on Software Engineering, 12(9):717–734, Sept.
1995.

[20] J. Andersson. Towards reactive software architectures. Licentiate Thesis.
769, Linköpings universitet, May 1999. In Linköping Studies in Science and
Technology.

[21] J. Bosch. Product-line architectures in industry: A case study. In Proceedings
of the 21st International Conference on Software Engineering.

[22] M.L. Griss. Implementing product-line features with component reuse. In 6
th International Conference on Software Reuse.

[23] M.L. Griss. Implementing product-line features by composing component
aspects. In First International Software Product Line Conference.

[24] J-M. Debaud and K. Schmid. A systematic approach to derive the scope of
software product lines. In Proceedings of the 21st International Conference
on Software Engineering, pages 34–43, 1999.

[25] A. Arora and S.S. Kulkarni. Component Based Design of Multitolerant Sys-
tems. Transactions on Software Engineering, 1998.

[26] PO. Bengtsson. Design and evaluation of software architecture. Licentiate
thesis, Department of Software Engineering and Computer Science, Blekinge
Institute of Technology.

[27] J.D. Musa. Software Reliability Engineering. McGraw-Hill, 1998.

32

Product family architecture

Productn

Product3
Product2

Product1

PAn

PA3

PA2

PA1

derived from

Product Architecture

Product family components

instances

Product specific components

Product family

Figure 1: Elements of a product family

NCB

NCB
standby

Legend

Node Control Logic

DPE Agent

Block instance

Figure 2: DPE architecture instance

33

OSE Kernel Link Handler

Component A

Component B'

Node 1

OSE KernelLink Handler

Component B

Component A'

Node 2

Logical Channel

Figure 3: Logical channels in OSE ∆

Platform

QA1
QA2

QA3
QA

Coordination

Interface

Applications

Platform´

QA1

QA2

QA3
QA

Coordination´

Interface´

Applications

QA4

Figure 4: Improving support for quality attributes

Platform

QA1

QA2

QA3
QA

Coordination

Interface

Applications

QA4

Figure 5: Introducing higher-level support for quality attributes

34

performance

security robustness

adaptability

maintainability

safety

cost

Figure 6: Quality footprint in a Kiviat diagram

product

time
mode change hardware failure

"quality space"

Figure 7: Dynamic Changes to the “quality footprint”

35

