
1

Software Product Lines: Organizational Alternatives

ABSTRACT

Software product lines enjoy increasingly wide adoption in
the software industry. Most authors focus on the technical
and process aspects and assume an organizational model
consisting of a domain engineering unit and several
application engineering units. In our cooperation with several
software development organizations applying software
product line principles, we have identified several other
organizational models that are employed as well. In this
article, we present a number of organizational alternatives,
organized around four main models, i.e. development
department, business units, domain engineering unit and
hierarchical domain engineering units. For each model, its
characteristics, applicability and advantages and
disadvantages are discussed, as well as an example. Based on
an analysis of these models, we present three factors that
influence the choice of the organizational model, i.e. product-
line assets, the responsibility levels and the type of
organizational units.

1 INTRODUCTION
Achieving reuse of software has been a long standing
ambition of the software engineering industry. Every since
the paper by McIlroy [8], the notion of constructing software
systems by composing software components has pursued in
various ways. Most proposals to achieving component-based
software development assume a market divided into
component developers, component users and a market place.
However, this proved to be overly ambitious for most types
of software. In response, there has been a shift from world-
wide reuse of components to organization-wide reuse.
Parallel to this development, the importance of an explicit
design and representation of the architecture of a software
system has become increasingly recognized. The
combination of these two insights lead to the definition of
software product lines. A software product line consists of a
product line architecture, a set of reusable components and a
set of products derived from the shared assets.

Existing literature on software product lines [1,5,6,7] tends to
focus on the technology and the processes that surround
product line based software development. These processes
include the design of the software architecture for the product

line, the development of the shared software components, the
derivation of software products and the evolution of the
aforementioned assets. However, generally the
organizational structure of software development
organizations that is needed for the successful execution of
these processes is not discussed. It is, nevertheless, necessary
to impose an organization on the individuals that are involved
in the product line.

In this article, we discuss four primary organizational models
that can be applied when adopting a product line based
approach to software development. For each model, we
describe in what situations the model is most applicable, the
advantages and disadvantages of the model and an example
of a company that employs the model. In addition we discuss
some factors that influence the choice of the most appropriate
organizational model. Based on an analysis of the presented
models, we have identified three dimensions that are
organizationally relevant, i.e. the assets that are considered
product line wide, the levels of responsibility employed in the
organisation and the nature of the organizational units. These
dimensions are used to present a space of organizational
alternatives.

The contribution of this paper is that it identifies and
categorizes the organizational alternatives for companies
employing software product lines. It extends considerably
over existing proposals for software product line organization
that assume a division in domain and application engineering
units

The remainder of this paper is organized as follows. In
section 2 until 5, four organizational models are discussed in
more detail. Section 6 discusses four influencing factors and
their effects on selecting the optimal organizational model. In
section 7, we discuss the dimensions that can be used to
describe a space of organizational alternatives. Finally,
related work is discussed in section 8 and the article is
concluded in section 9.

2 DEVELOPMENT DEPARTMENT
The development department model imposes no permanent
organizational structure on the architects and engineers that
are involved in the software product line. All staff members

Jan Bosch
University of Groningen

Department of Computing Science
PO Box 800, NL9700 AV Groningen, The Netherlands

+31 50 363 3941
Jan.Bosch@cs.rug.nl http://www.ipd.hk-r.se/bosch

2

can, in principle, be assigned to work with any type of asset
within the family. Typically, work is organized in projects
that dynamically organize staff members in temporary
networks. These projects can be categorized into domain
engineering projects and application (or system) engineering
projects. In the former, the goal of the project is the
development of a new reusable asset or a new version of it,
e.g. a software component. The goal is explicitly not a system
or product that can be delivered to internal or external
customers of the development department. The system
engineering projects are concerned with developing a system,
either a new or a new version, that can be delivered to a
customer. Occasionally, extensions to the reusable assets are
required to fulfil the system requirements that are more
generally applicable than just the system under development.
In that case, the result of the system engineering project may
be a new version of one or more of the reusable assets, in
addition to the deliverable system.

In figure 1, the development department model is presented
graphically. Both the reusable product line assets and the
concrete systems built based on these assets are developed
and maintained by a single organizational unit.

Figure 1: Development department model

2.1 Applicability
The development department model is primarily applicable
for relatively small organizations and for consultancy
organizations, i.e. organizations that sell projects rather than
products to their customers. Based on our experience, our
impression is that this model works up to around 30 software-
related staff members in product-based organizations. If the
number of staff members exceeds 30, generally some kind of
organizational restructuring is required anyhow, independent
of the use of a product line.

2.2 Advantages and disadvantages
The development department model has, as most things in
life, a number of advantages and disadvantages. The primary
advantage is simplicity and ease of communication. Since all
staff members are working within the same organizational
context, come in contact with all parts of the system family

and have contact with the customers, the product line can be
developed and evolved in a very efficient manner with little
organizational and administrative overhead. A second
advantage is that, assuming that a positive attitude towards
reuse-based software development exists within the
department, it is possible to adopt a software product line
approach without changing the existing organization, which
may simplify the adoption process.

The primary disadvantage of this approach is that it is not
scalable. When the organization expands and reaches, e.g.,
around 30 staff members, it is necessary to reorganize and to
create specialized units. A second disadvantage is that
typically within organizations, staff members are, depending
on the local culture, more interested in either domain
engineering or system engineering, i.e. it has higher status in
the informal organization to work with a particular type of
engineering. The danger is that the lower status type of
engineering is not performed appropriately. This may lead to
highly general and flexible reusable components, but systems
that do not fulfil the required quality levels, or visa versa.

2.3 Example
A company that employed this organizational model is
Securitas Larm, Sweden. All their product development, i.e.
hardware and software, is concentrated in a single
development department. This department maintains a
product line in the domain of fire-alarm systems, as we
describe in [2]. The department has an engineering staff about
25 persons, so it fits our applicability requirement. In fact, up
to a number of years ago, development was organized in
product business units. Each product unit was responsible for
sales, marketing, installation and development of the product.
However, especially development did not function well in
this organizational form. Generally only up to five engineers
worked with the product development, which was too few to
create an effective development organization. Consequently,
Securitas Larm decided to reorganize development into a
single development department.

3 BUSINESS UNITS
The second organizational model that we discuss is organized
around business units. Each business unit is responsible for
the development and evolution of one or a few products in the
software product line. The reusable assets in the product line
are shared by the business units. The evolution of shared
assets is generally performed in a distributed manner, i.e.
each business unit can extend the functionality in the shared
assets, test it and make the newer version available to the
other business units. The initial development of shared assets
is generally performed through domain engineering projects.
The project team consists of members from all or most
business units. Generally, the business units most interested
in the creation of, e.g. a new software component, put the

development department
architecture components

reusable
product
line
assets

product 1 product 2 product n

...

3

largest amount of effort in the domain engineering project,
but all business units share, in principle, the responsibility for
all common assets.

Depending on the number and size of the business units and
the ratio of shared versus system specific functionality in
each system, we have identified three levels of maturity,
especially with respect to the evolution of the shared assets:

Unconstrained model. In the unconstrained model, any
business unit can extend the functionality of any shared
component and make it available as a new version in the
shared asset base. The business unit that performed the
extension is also responsible for verifying that, where
relevant, all existing functionality is untouched and that the
new functionality performs according to specification.

A typical problem that companies using this model suffer
from is that, typically software components, are extended
with too system-specific functionality. Either the
functionality has not been generalized sufficiently or the
functionality should have been implemented as system-
specific code, but for internal reasons, e.g. implementation
efficiency or system performance, the business unit decided
to implement the functionality as part of the shared
component.

These problems normally lead to the erosion or degradation
of the component, i.e. it becomes, over time, harder and less
cost-effective to use the shared component, rather than
developing a system-specific version of the functionality. As
we discussed in [2], some companies have performed
component reengineering projects in which a team consisting
of members from the business units using the component,
reengineers the component and improves its quality attributes
to acceptable levels. Failure to reengineer when necessary
may lead to the situation where the product line exists on
paper, but where the business units develop and maintain
system-specific versions of all or most components in the
product line, which invalidates all advantages of a software
product line approach, while maintaining some of the
disadvantages.

Asset responsibles. Especially when the problems discussed
above manifest themselves in increasing frequency and
severity, the first step to address these problems is to
introduce asset responsibles. An asset responsible has the
obligation to verify that the evolution of the asset is
performed according to the best interest of the organization as
a whole, rather than optimal from the perspective of a single
business unit. The asset responsible is explicitly not
responsible for the implementation of new requirements. This
task is still performed by the business unit that requires the
additional functionality. However, all evolution should occur
with the asset responsible's consent and before the new
version of the asset is made generally accessible, the asset
responsible will verify through regression testing and other
means that the other business units are at least not negatively

affected by the evolution. Preferably, new requirements are
implemented in such a fashion that even other business units
can benefit from them. The asset responsible is often selected
from the business unit that makes most extensive and
advanced use of the component.

Although the asset responsible model, in theory at least,
should avoid the problems associated with the unconstrained
model, in practice it often remains hard for the asset
responsible to control the evolution. One reason is that time-
to-market requirements for business units often are
prioritized by higher management, which may force the asset
responsible to accept extensions and changes that do not fulfil
the goals, e.g. too system-specific. A second reason is that,
since the asset responsible does not perform the evolution
him or herself, it is not always trivial to verify that the new
requirements were implemented as agreed upon with the
business unit. The result of this is that components still erode
over time, although generally at a lower pace than with the
unconstrained model.

Mixed responsibility. Often, with increasing size of the
system family, number of staff and business units, some point
is reached where the organization still is unwilling to adopt
the next model, i.e. domain engineering units, but wants to
assign the responsibility for performing the evolution assets
to a particular unit. In that case, the mixed responsibility
model may be applied. In this model, each business unit is
assigned the responsibility for one or more assets, in addition
to the product(s) the unit is responsible for. The responsibility
for a particular asset is generally assigned to the business unit
that makes the most extensive and advanced use of the
component. Consequently, most requests for changes and
extensions will originate from within the business unit, which
simplifies the management of asset evolution. The other
business units have, in this model, no longer the authority to
implement changes in the shared component. Instead, they
need to issue requests to the business unit responsible for the
component whenever an extension or change is required.

The main advantage of this approach is the increased control
over the evolution process. However, two potential
disadvantages exist. First, since the responsibility for
implementing changes in the shared asset is not always
located at the business unit that needs those changes, there are
bound to be delays in the development of systems that could
have been avoided in the approaches described earlier.
Second, each business unit has to divide its efforts between
developing the next version of its product(s) and the
evolution of the component(s) it is responsible for. Especially
when other business units have change requests, these may
conflict with the ongoing activities within the business unit
and the unit may prioritize its own goals over the goals of
other business units. In addition, the business unit may extend
the components it is responsible for in ways that are
optimized for its own purposes, rather than for the

4

organization as a whole. These developments may lead to
conflicts between the business units and, in the worst case, the
abolishment of the product line approach.

Conflicts. The way the software product line came into
existence is, in our experience, an important factor in the
success or failure of a family. If the business units already
exist and develop their systems independently and, at some
point, the software product line approach is adopted because
of management decisions, conflicts between the business
units are rather likely because giving up freedom that one had
up to that point in time is generally hard. If the business units
exist, but the product line gradually evolves because of
bottom-up, informal cooperation between staff in different
business units, this is an excellent ground to build a product
line upon. However, the danger exist that when cooperation
is changed from optional to obligatory, tensions and conflicts
appear anyhow. Finally, in some companies, business units
appear through an organic growth of the company. When
expanding the set of systems developed and maintained by
the company, at some point, a reorganization into business
units is necessary. However, since the staff in those units
earlier worked together and used the same assets, both the
product line and cooperation over business units develop
naturally and this culture often remains present long after the
reorganization, especially when it is nurtured by
management. Finally, conflicts and tensions between
business units must resolved by management early and
proactively since they imply considerable risk for the success
of the product line.

In figure 2, the business unit model is presented graphically.
The reusable system-family assets are shared by the business
units, both with respect to use as well as to evolution.

Figure 2: Business unit model

3.1 Applicability
As discussed in section 2, when the number of staff members
is too low, e.g. below 30, the organization in business units is
often not optimal since too few people are working together
and the communication overhead over unit boundaries is too
large. On the other hand, our hypothesis, based on a number
of cases that we have studied, is that when the number of staff
members exceeds 100, domain engineering units may
become necessary to reduce the n-to-n communication
between all business units to a one-to-n communication
between the domain engineering unit and the system
engineering units. Thus, with respect to staff size, we believe
that the optimal range for the business unit model is between
30 and 100, although this, to a large extent, depends on the
specific context as well.

3.2 Advantages and disadvantages
The advantage of this model is that it allows for effective
sharing of assets, i.e. software architectures and components,
between a number of organizational units. The sharing is
effective in terms of access to the assets, but in particular the
evolution of assets (especially true for the unconstrained and
the asset responsible approaches). In addition, the approach
scales considerably better than the development department
model, e.g. up to 100 engineers in the general case.

The main disadvantage is that, due to the natural focus of the
business units on systems (or products), there is no entity or
explicit incentive to focus on the shared assets. This is the
underlying cause for the erosion of the architecture and
components in the system family. The timely and reliable
evolution of the shared assets relies on the organizational
culture and the commitment and responsibility felt by the
individuals working with the assets.

3.3 Example
Axis Communications, Sweden, employs the business unit
model. Their storage-server, scanner-server and camera-
server products are developed by three business units. These
business units share a common product line architecture and
a set of more than ten object-oriented frameworks that may be
extended with system-specific code where needed. Initially,
Axis used the unconstrained model with relatively informal
asset responsibles, but recently the role of asset responsibles
has been formalized and they now have the right to refuse
new versions of assets that do not fulfil generality, quality and
compatibility requirements. The assets responsibles are taken
from the business units that make the most extensive and
advanced use of the associated assets. Within the
organization, discussions were ongoing whether an
independent domain engineering unit, alternatively, a mixed
responsibility approach would be needed to guarantee the
proper evolution of assets. Whenever new assets or a major
redesign of some existing asset is needed, Axis has used
domain engineering projects, but ̀ disguised' these projects as
system engineering projects by developing prototype

business unit business unit

business unitbusiness unit

architecture components reusable
product
line
assets

product 1 product 2

product n...
product 3

5

systems. The advantage of the latter is that the integration of
the new asset with the existing assets is automatically verified
as part of the domain engineering project.

4 DOMAIN ENGINEERING UNIT
The third organizational model for software product lines is
concerned with separating the development and evolution of
shared assets from the development of concrete systems. The
former is performed by a, so-called, domain engineering unit,
whereas the latter is performed by product engineering units.
System engineering units are sometimes referred to as
application or system engineering units.

The domain engineering unit model is typically applicable for
larger organizations, but requires considerable amounts of
communication between the product engineering units, that
are in frequent contact with the users of their products, and
the domain engineering unit that has no direct contact with
customers, but needs a good understanding of the
requirements that the product engineering units have. Thus,
one can identify flows in two directions, i.e. the requirements
flow from the product engineering units towards the domain
engineering unit and the new versions of assets, i.e. the
software architecture and the components of system family,
are distributed by the domain engineering unit to the product
engineering units.

The domain engineering unit model exists in two alternatives,
i.e. an approach where only a single domain engineering unit
exists and, secondly, an approach where multiple domain
engineering units exist. In the first case, the responsibility for
the development and evolution of all shared assets, i.e. the
software architecture and the components, is assigned to a
single organizational unit. This unit is the sole contact point
for the product engineering units that construct their products
based on the shared assets.

The second alternative employs multiple domain engineering
units, i.e. one unit responsible for the design and evolution of
the software architecture for the product line and, for each
architectural component (or set of related components), a
component engineering unit that manages the design and
evolution of the components. Finally, the product engineering
units are, also in this alternative, concerned with the
development of products based on the assets. The main
difference between the first and second alternative is that in
the latter, the level of specialization is even higher and that
product engineering units need to interact with multiple
domain engineering units.

In figure 3, the organizational model for using domain
engineering unit is presented. The domain engineering unit is
responsible for the software architecture and components of
the product line, whereas the system engineering units are
responsible for developing the systems based on the shared
assets.

4.1 Applicability
Especially smaller companies are very sceptical of domain
engineering units. One of the concerns is that, just because
domain engineering units are concerned with reusable assets,
rather than products that are relevant for users, these units
may not be as focused on generating added value, but rather
lose themselves in aesthetic, generic, but useless abstractions.
However, based on our experience, our impression is that
when the number of staff members working within a product
family exceeds around 100 software engineers, the amount of
overhead in the communication between the business units
causes a need for an organizational unit or units specialized
on domain engineering.

Multiple rather than a single domain engineering unit
becomes necessary when the size of the domain engineering
unit becomes too large, e.g. 30 software engineers. In that
case, it becomes necessary to create multiple groups that
focus on different component sets within a product line
software architecture. In some cases, although component
engineering units exist, no explicit product line architecture
unit is present. Rather, a small team of software architects
from the component engineering units assumes the
responsibility for the overall architecture.

Finally, at which point the complexities of software
development even exceed the domain engineering unit
approach is not obvious, but when the number of software
engineers is in the hundreds, the hierarchical domain
engineering units model, discussed in the next section, may
become necessary.

Figure 3: The domain engineering unit model

4.2 Advantages and disadvantages
Despite the scepticism in, especially smaller organizations,
the domain engineering unit model has a number of important
advantages. First, as mentioned, it removes the need for n-to-
n communication between the business units, and reduces it
to one-to-n communication. Second, whereas business units
may extend components with too product-specific
extensions, the domain engineering unit is responsible for
evolving the components such that the requirements of all
systems in the product line are satisfied. In addition, conflicts

product engineering unitproduct engineering unit
product engineering unit

domain engineering unit
architecture components reusable

product
line
assets

product 1 product 2 product n

...

6

can be resolved in a more objective and compromise-oriented
fashion. Finally, the domain engineering unit approach scales
up to much larger numbers of software engineering staff than
the aforementioned approaches.

Obviously, the model has some associated disadvantages as
well. The foremost is the difficulty of managing the
requirements flow towards the domain engineering unit, the
balancing of conflicting requirements from different product
engineering units and the subsequent implementation of the
selected requirements in the next version of the assets. This
causes delays in the implementation of new features in the
shared assets, which, in turn, delays the time-to-market of
products. This may be a major disadvantage of the domain
engineering unit model since time-to-market is the primary
goal of many software development organizations. To
address this, the organization may allow product engineering
units to, at least temporarily, create their own versions of
shared assets by extending the existing version with product-
specific features. This allows the product engineering unit to
improve its time-to-market while it does not expose the other
product engineering units to immature and instable
components. The intention is generally to incorporate the
product-specific extensions, in a generalized form, into the
next shared version of the component.

4.3 Example
The domain engineering unit model is used by Symbian. The
EPOC operating system consists of a set of components and
the responsibility of a number of subsets is assigned to
specialized organizational units. For each device family
requirement definition (DFRD), a unit exists that composes
and integrates versions of these components into a release of
the complete EPOC operating system to the partners of
Symbian. The release contains specific versions and
instantiations of the various components for the particular
DFRD. Some components are only included in one or a few
of the DFRDs.

5 HIERARCHICAL DOMAIN ENGINEERING UNITS
As we discussed in the previous section, there is an upper
boundary on the size of an effective domain engineering unit
model. However, generally even before the maximum staff
member size is reached, often already for technical reasons,
an additional level has been introduced in the software
product line. This additional layer contains one or more
specialized product lines that, depending on their size and
complexity can either be managed using the business unit
model or may actually require a domain engineering unit.

In the case that a specialized product line requires a domain
engineering unit, we have, in fact, instantiated the
hierarchical domain engineering units model that is the topic
of this section. This model is only suitable for a large or very
large organization that has an extensive family of products. If,
during the design or evolution of the product line, it becomes
necessary to organize the product line in a hierarchical

manner and a considerable number of staff members is
involved in the product line, then it may be necessary to
create specialized domain engineering units that develop and
evolve the reusable assets for a subset of the products in the
family.

The reusable product line assets at the top level are frequently
referred to as a platform and not necessarily identified as part
of the product line. We believe, however, that it is relevant to
explicitly identify and benefit from the hierarchical nature of
these assets. Traditionally, platforms are considered as means
to provide shared functionality, but without imposing any
architectural constraints. In practice, however, a platform
does impose constraints and when considering the platform
as the top-level product line asset set, this is made more
explicit and the designers of specialized product lines and
family members will derive from the software architecture
rather than design it.

In figure 4, the hierarchical domain engineering units model
is presented graphically. For a subset of the systems in the
product line, a domain engineering unit is present that
develops and maintains the specialized product line software
architecture and the associated components. Only the
components specific for the subset in the product line are the
responsibility of the specialized domain engineering unit. All
other components are inherited from the overall product line
asset base. The specialized domain engineering unit is also
responsible for integrating the specialized with the general
reusable assets.

Figure 4: Hierarchical domain engineering unit model

5.1 Applicability
As mentioned in the introduction, the hierarchical domain
units model becomes the preferred model when the number
and variability of systems in the family is large or very large
and considerable numbers of staff members, i.e. hundreds,

product engineering unit

product engineering unitproduct engineering unit

domain engineering unit

product 1

architecture components reusable
product
line
assets

product 2

product n

...

domain engineering unit
architecture components

specialized
product line

...

7

are involved. Consequently, the model is primarily suitable in
large organizations and long-lived systems in the family,
since the effort and expenses involved in building up this
organizational model are substantial.

The complexities involved in the implementation and use of
this organizational model are beyond the scope of this article,
but a considerable maturity with respect to software
development projects is required for this approach to succeed.
This model is the fourth and most complex model that we
discuss and if the product line cannot be captured within this
model, it is reasonable to assume that the scope of the family
has been set too wide.

5.2 Advantages and disadvantages
The advantages of this model include its ability to encompass
large, complex product lines and organize large numbers of
engineers. None of the organizational models discussed
earlier scales up to the hundreds of software engineers that
can be organized using this model.

The disadvantages include the considerable overhead that the
approach implies and the difficulty of achieving agile
reactions to changed market requirements. Typically, a
delicate balance needs to be found between allowing product
engineering units to act independent, including the temporary
creation of product-specific versions of product line
components, versus capitalizing on the commonalities
between products and requiring product engineering units to
use shared versions of components.

5.3 Example
An example of an organization that has successfully adopted
the hierarchical domain engineering units model is Nokia
Mobile Phones. This company develops and maintains a wide
variety of products in the wireless information devices
domain, in particular mobile phones. The company has
applied a product line approach to its mobile phone
development for several years. The software product line
consists of two levels. The top level, i.e. a ‘platform’, is
developed and maintained by a top-level ‘infrastructure’
group, and consists of a product line architecture and a set of
components, that are shared by all mobile phone products and
ported to different hardware platforms. For subsets of
products in the product family, specialized groups exist that
develop, especially, components specific for the family
members in the subset. These domain engineering units have
frequent contact and exchange considerable amounts of
information, but are organized as independent units.

6 INFLUENCING FACTORS
Up to this point, we have presented the size of the product line
and the engineering staff involved in the development and
evolution of the product line as the primary factors in
selecting the appropriate organizational model. Although, in
our experience, the above factors indeed are the most
prominent, several factors exist that should be allowed to

influence the selection decision as well. Below, we present
some factors that we have identified in industry as relevant in
this context.

6.1 Geographical distribution
Despite the emergence of a variety of technological solutions
aiming at reducing the effects of geographical location, e.g.
telephone, e-mail, video conferencing and distributed
document management, the physical location of the staff
involved in the software product line still plays a role. It
simply is more difficult to maintain effective and efficient
communication channels between teams that are in disparate
locations and, perhaps even, time zones, than between teams
that are co-located. Therefore, units that need to exchange
much information should preferably be located closer to each
other than units that can cooperate with less information.

For instance, geographical distribution of the teams
developing the systems in the family may cause a company to
select the domain engineering unit model because it focuses
the communication between the domain engineering unit and
each product engineering unit, rather than the n-to-n
communication required when using the business unit model.

6.2 Project management maturity
The complexity of managing projects grows exponentially
with the size of the project (in virtually any measure).
Therefore, the introduction of a software product line
approach requires, independent of the organizational model,
a relatively high level of maturity with respect to project
management. Projects need to be synchronized over
organizational boundaries and activities in different projects
may be depending on each other, which requires experience
and pro-activeness in project management.

To give an example, incorporating new functionality in a
product line component at Axis Communications requires
communication with the other business units at the start, the
actual execution and at the end of the project. At the start
because it should be verified that no other business unit is
currently including the same or related functionality. During
the project, to verify that the included functionality and the
way in which it is implemented are sufficiently general and
provide as much benefit as possible to the other business
units. After the end of the project, to verify that the new
version of the component provides backward compatibility to
systems developed by the other business units.

6.3 Organizational culture
The culture of an organization is often considered to be a hard
to use concept, which is obviously the case. However, the
attitude that each engineer has towards the tasks that he or she
is assigned to do and the value patterns exhibited by the
informal organizational groups have a major influence on the
final outcome of any project. Thus, if a kind of `cowboy' or
`hero' culture exists in which individual achievements are
valued higher than group achievements, then this attitude can

8

prove to be a serious inhibitor of a successful software
product line approach that is highly dependent on a team
culture that supports interdependency, trust and compromise.

For instance, at one company, which will remain unnamed,
we discussed the introduction of a software product line
approach. The company had extensive experience in the use
of object-oriented frameworks and within each business unit
reuse was wide-spread and accepted. However, when top
management tried to implement product line based reuse,
business unit managers revolted and the initiative was
cancelled. The reason, it turned out, was that each business
unit would have to sacrifice its lead architect(s) for a
considerable amount of time during the development of the
reusable product line assets. In addition, the conversion
would delay several ongoing and planned projects. These two
effects of adopting a product line approach would, among
others, lead to highly negative effects on the bonuses received
by, especially, business unit management. One explanation
could be that these managers were selfish people that did not
consider what was best for the company as a whole. However,
our explanation is that top management had, under many
years, created a culture in which business units were highly
independent profit centres. This culture conflicted directly
with the product line approach top management tried to
introduce.

6.4 Type of systems
Finally, an important factor influencing the optimal
organizational model, but also the scope and nature of the
system family, is the type of systems that make up the family.
Systems whose requirements change frequently and
drastically, e.g. due to new technological possibilities, are
substantially less suitable for large up-front investments that
a wide scoped, hierarchical software product line approach
may require, than systems with relatively stable requirement
sets and long lifetimes. Medical and telecommunication
(server-side) systems are typical systems that have
reasonably well understood functionality and that need to be
maintained for at least a decade and often considerably
longer.

For instance, consultancy companies that typically are project
based are able to adopt a software product line approach.
Since subsequent projects often are in the same domain, the
availability of a product line architecture and a set of reusable
components may substantially reduce lead time and
development cost. However, the investment taken by such a
company to develop these assets can never be in the same
order of magnitude as a product-based company with clear
market predictions for new products. The consultancy
company has a significantly higher risk that future projects
are not in exactly the same domain, but an adjacent,
invalidating or at least reducing the usefulness of the
developed assets. Consequently, investment and risk always
need to be balanced appropriately.

7 ORGANIZATIONAL DIMENSIONS
Once we had identified the four organizational models and
their variants, we performed an analysis of their
characteristics. Based on this analysis, we have identified
three dimensions that play role in the selection of the most
appropriate organization for software product line based
development. These dimensions are: the assets that are
considered product line wide, the levels of responsibility
employed in the organisation and the nature of the
organizational units. When combined, these dimensions form
a space of organizational alternatives. Below, each dimension
is discussed in more detail. The section ends with a discussion
of the relation between the dimensions and the discussed
organizational models.

7.1 Product line assets
A software product line consists of a number of assets, i.e. the
product line architecture, the product line components and the
product specific software. In the traditional organizational
model, the product line architecture and shared components
are the responsibility of the domain engineering units
whereas the product specific software is the responsibility of
the application engineering units.

In our experience, the way assets are treated depends on the
type of products and the type of organization employing a
product line approach. Therefore, the assets considered by the
organization as a whole may vary from just the product line
architecture to all assets including the product specific code.
Below, we describe four levels:

• Architecture: In organizations with little integration
between the various units, a first step towards achieving a
software product line may be to synchronise around a
common architecture for the products where possible. In
this case, only the architecture is the shared asset.

• Platform: Once a shared architecture is a place, it
becomes possible to define some basic functionality as
shared components. Typically, this functionality is
shared by all products. In this way, the benefits of
increased integration between different units are obvious
and no or few disadvantages are present. Often, this type
of sharing between product units is referred to as using a
platform.

• Components : As in traditional software product lines,
the next level is to share both the product line architec-
ture and most of the software components that are shared
among two or more products. At this point, typically
some products experience disadvantages of using the
product line. This requires the organization to explicitly
stress the overall advantages which, obviously, should
outweigh the local disadvantages.

• Product specifics: The highest level of integration is
achieved when product specific code is explicitly consid-
ered at the product line level. The reason for focusing on

9

product specific code is typically that much of this code,
at some point in the future, is used in other products as
well. Thus, by designing and developing product specific
code carefully, future integration in the shared product
line assets is made considerably easier.

7.2 Responsibility levels
A second dimension is the way responsibility for product line
assets is handled. Again, traditionally a clear division
between domain engineering and application engineering
units exists. However, in many cases the actual assignment of
responsibility is more fine grained. We have identified three
levels of responsibility within organizations applying
software product lines. Below these levels are discussed:

• Shared: Especially in organizations where a product line
appeared in a bottom-up manner, the responsibility for
the shared product line assets may, at least initially, be
shared among the organizational units.

• Responsible: At some point, typically an individual or a
small team is assigned at the responsible for the particu-
lar asset. However, this does not mean that the evolution
of the asset is performed by the responsible. The respon-
sibility of the person or team is limited to ensuring that
changes do not violate the requirements of other users or
decrease future modifiability.

• Engineered: The highest level of responsibility is
achieved when a team is responsible for the development
and evolution of a particular asset. This requires users of
the asset to request changes from the team. The team has
the responsibility to respond to change requests in a fair
and timely manner.

7.3 Organizational units
The third dimension that we have identified as relevant for the
organization of software product line based development is
the way staff is organized into units. Our cooperation with
software industry has learned us that one of four perspectives
can be taken. Below, these perspectives are discussed.

• Project: The first model does not employ a permanent
assignment of staff to units. This leads to a project-based
type for organization, where staff is assigned to teams for
the duration of projects.

• Product: The second model is to organize staff around
products. Because staff is permanently assigned to a par-
ticular product, their experience leads to increased levels
of efficiency. However, this experience is not shared
between different products.

• Shared components: When considerable overlap
between different products is identified, the company
may decide to exploit this by identifying and defining a
number of components that are assigned to units that act
as service providers to the product units.

• Architecture centric: The final model for organizing
staff centers around a software architecture that is shared
among the products. This architecture defines the shared
components and the product specific code and, conse-
quently, the organizational units. Different from the pre-
vious model where the product units are in control, in this
model typically the software architecture and associated
staff control development.

7.4 Organizational Alternatives
The three dimensions discussed above define a three-
dimensional space that can be used to categorize
organizational approaches to product-line development. In
section 2 through 5, four organizational models to software
product line based development were discussed. To illustrate
the relation between the dimensions and the organizational
models, figure 5 presents this graphically. Development
department and domain engineering units are presented by a
single line, whereas business units and hierarchical domain
engineering form planes. The latter is due to the fact that
alternatives exist for these models.

Figure 5: Dimensions organizing software product lines

What is clear from this 3D space is that several alternatives
exist that we have not discussed in the earlier sections.
However, this does not mean that these are no viable
alternatives. We are convinced that organizations exist that
employ these alternative models. When adopting a software
product line, it is advisable to understand what alternatives
are available and to evaluate these, rather than blindly
adopting a standard model.

8 RELATED WORK
As we discussed in the introduction, most publications in the
domain of software product lines address issues different
from the organizational ones. Macala et al. [7] and Dikel et al.
[5] were among the first publications that describe
experiences from using software product lines in an industrial
context. Although the authors do address organizational,
management and staffing issues, both assume the domain
engineering unit model and present it as the de-facto

assets

architecture

components

platform

product specifics

project

product

component
architecture centric

organizational units

responsibility

sh
ar

ed

re
sp

on
si

bl
e

en
gi

ne
er

ed

development
department

domain
engineering unit

business
units

hierarchical domain
engineering unit

10

organizational model. Jacobsen et al. [6] also discuss
organizational issues, but focus on a number of roles that
should be present and do not address the overall organization
of software product line based development. In Clements and
Northrop [4], the authors address organizational issues of
software product line. The authors identify four functional
groups, i.e. the architecture group, the component
engineering group, the product line support group and the
product development group. The authors identify that these
functional groups may be mapped to organizational units in
various ways. Finally, Bayer et al. [1] discuss a methodology
for developing software product lines and discuss
organizational guidelines, but no organizational models.

9 CONCLUSION
In this article, we have discussed four organizational models
for software product lines and discussed, based on our
experiences, the applicability of the model, the advantages
and disadvantages and an example of an organization that
employs the particular model. Below, the four models are
briefly summarized:

Development department. In this model software
development is concentrated in a single development
department, no organizational specialization exists with
either the software product line assets or the systems in the
family. The model is especially suitable for smaller
organizations. The primary advantages are that it is simple
and communication between staff members is easy, whereas
the disadvantage is that the model does not scale to larger
organizations.

Business units. The second type of organizational model
employs a specialization around the type of systems in the
form of business units. Three alternatives exist, i.e. the
unconstrained model, the asset responsibles model and the
mixed responsibility model. Some of our industrial partners
have successfully applied this model up to 100 software
engineers. An advantage of the model is that it allows for
effective sharing of assets between a set of organizational
units. A disadvantage is that business units easily focus on the
concrete systems rather than on the reusable assets.

Domain engineering unit. In this model, the domain
engineering unit is responsible for the design, development
and evolution of the reusable assets. Product engineering
units are responsible for developing and evolving the
products built based on the product line assets. The model is
widely scalable, from the boundaries where the business unit
model reduces effectiveness up to hundreds of software
engineers. Another advantage of this model is that it reduces
communication from n-to-n in the business unit model to one-
to-n between the domain engineering unit and the system
engineering units. Finally, the domain engineering unit
focuses on developing general, reusable assets which
addresses one of the problems with the aforementioned
model, i.e. too little focus on the reusable assets. One

disadvantage is the difficulty of managing the requirements
flow and the evolution of reusable assets in response to these
new requirements. Since the domain engineering unit needs
to balance the requirements of all system engineering units,
this may negatively affect time-to-market for individual
system engineering units.

Hierarchical domain engineering units. In cases where an
hierarchical product line has been necessary, also a hierarchy
of domain units may be required. The domain engineering
units that work with specialized product lines use the top-
level assets as a basis to found their own product line upon.
This model is applicable especially in large or very large
organizations with a large variety of long-lived systems. The
advantage of this model is that it provides an organizational
model for effectively organizing large numbers of software
engineers. One disadvantage is the administrative overhead
that easily builds up, reducing the agility of the organization
as a whole, which may affect competitiveness negatively.

We have discussed a number of factors that influence the
organizational model that is optimal in a particular situation.
These factors include geographical distribution, project
management maturity, organizational culture and the type of
systems.

Based on an analysis of the four organizational models, we
have identified three dimensions that are organisationally
relevant, i.e. the assets that are considered product line wide,
the levels of responsibility employed in the organisation and
the nature of the organizational units.

REFERENCES
1. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K.

Schmid, T. Widen, J.M. DeBaud, ‘PuLSE: A Methodology to
Develop Software Product Lines, Symposium on Software
Reuse, 1999.

2. Jan Bosch, ‘Product-Line Architectures in Industry: A Case
Study’, Proceedings of the 21st International Conference on
Software Engineering , pp. 544-554, May 1999.

3. J. Bosch, Design & Use of Software Architectures - Adopting
and Evolving a Product-Line Approach , Addison Wesley,
ISBN 0-201-67494-7, 2000.

4. P. Clements, L. Northrop, ‘A Framework for Software Product
Line Practice - Version 1.0’, Software Engineering Institute,
Carnegie Mellon , September 1998.

5. D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, ‘Applying
Software Product-Line Architecture,’ IEEE Computer , pp. 49-
55, August 1997.

6. I. Jacobsen, M. Griss, P. Jönsson, Software Reuse - Architec-
ture, Process and Organization for Business Success , Addison-
Wesley, 1997.

7. R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing Domain-
Specific Product-Line Development,’ IEEE Software, pp. 57-
67, 1996.

8. M. D. McIlroy, ‘Mass Produced Software Components,’ in
‘Software Engineering,’ Report on A Conference Sponsored by
the NATO Science Committee, P. Naur, B. Randell (eds.), Gar-
misch, Germany, 7th to 11th October, 1968, NATO Science
Committee, 1969.

