
Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization

Abstract . Software product lines have received considerable adoption in the
software industry and prove to be a very successful approach to intra-organiza-
tional software reuse. Existing literature, however, often presents only a single
approach towards adopting and evolving a software product line. In this paper,
we present an overview of different approaches to architecture-centric, intra-
organizational reuse of software artefacts. We relate these to maturity levels for
product line artefacts and organizational models.

1 Introduction

Software product lines have achieved substantial adoption by the software industry. A
wide variety of companies has substantially decreased the cost of software develop-
ment and maintenance and time to market and increased the quality of their software
products. The software product line approach can be considered to be the first intra-
organizational software reuse approach that has proven successful.

Contemporary literature on product lines often presents one particular approach to
adopting a product line, suggesting a particular process model, a particular organiza-
tional model and a specific approach to adopt the product line approach. For instance,
most existing literature assumes the organization to have adopted a domain engineer-
ing unit model, where this unit develops reusable artefacts while the product or appli-
cation engineering units develop concrete products based on these reusable assets.

However, in our experiences with software companies that have adopted a product
line approach, we have learned that the actually available alternatives are generally
much more diverse than the particular approach presented in traditional literature. The
adoption of a product line, the product line processes and the organization of software
development have more freedom than one may expect.

Software product lines do not appear accidentally, but require a conscious and
explicit effort from the organization interested in employing the product line approach.
Basically, one can identify two relevant dimensions with respect to the initiation proc-
ess. First, the organization may take an evolutionary or a revolutionary approach to the
adoption process. Secondly, the product line approach can be applied to an existing
line of products or to a new system or product family that the organization intends to

Jan Bosch

University of Groningen
Department of Computing Science
PO Box 800, 9700 AV, Groningen

The Netherlands
Jan.Bosch@cs.rug.nl http://www.cs.rug.nl/~bosch

use to expand its market with. Each case has an associated risk level and benefits. For
instance, in general, the revolutionary approach involves more risk, but higher returns
compared to the evolutionary approach. In table 1, the characteristics of each case are
briefly described.

Independent of the adoption approach taken, the organization will evolve its approach
to software development. Typically, the software product line developed by the organ-
ization typically evolves through a number of maturity levels1 . As we will discuss later
in the paper, these levels include standardized infrastructure, software platform, soft-
ware product line, configurable product base, program of product lines and product
populations. For a given scope in terms of features and products containing a subset of
these features, each of these approaches can be applied. Thus, these approaches
present different solutions to the same problem.

The approach that is most appropriate for a particular situation is a function of the
maturity of the organization and the maturity of the application domain. Organizations
more mature in terms of domain understanding, project organization and management
and with less geographical distribution will more easily adopt more mature product
line approaches that typically focus more on domain engineering. A second influenc-
ing factor is the maturity of the application domain itself. For stable domains, it is eas-
ier to maximize domain engineering and minimize application engineering, because
these investments have a high likelihood of providing an adequate return. It is impor-
tant to stress that the economically optimal approach is a function of the maturity of
the organization and of the application domain. In highly volatile domains, it may,
even for a very mature organization, be preferable to only employ a standardized infra-
structure approach.

In addition to the maturity of the overall product line approach, one can also iden-
tify different maturity levels for the artefacts that are developed and used as part of the

Table 1 Two dimensions of product line initiation

Evolutionary Revolutionary

Existing set
of products

Develop vision for product line
architecture based on the architectures
of family members.
Develop one product line component at
a time (possibly for a subset of product
line members) by evolving existing
components

Product line architecture and
components are developed based
on super-set of product line
member requirements and
predicted future requirements.

New product
line

Product line architecture and
components evolve with the
requirements posed by new product line
members

Product line architecture and
components developed to match
requirements of all expected
product line members

1. Our use of the term ‘maturity level’ has no relation its use in the capability maturity model
(CMM).

product-line approach. These artefacts include the architecture, the components and
the products. For each of these, we discuss three maturity levels. Finally, different
organizational models can be used for product line development.

The remainder of the paper is organized as follows. In the next section, we discuss
the six maturity levels that we have identified for software product line approaches. In
section 3, we discuss the maturity levels for the main product line artefacts, i.e. the
product line architecture, the shared product line components and the products. The
organizational models one may adopt are discussed in section 4. In section 5, we dis-
cuss the relation between the product line approaches, the artefacts and organizational
models. Related work is discussed in section 6 and the paper is concluded in section 7.

Figure 1. Maturity levels for software product lines

2 Maturity Levels of Software Product Lines

As mentioned in the introduction, architecture-centric, intra-organizational reuse takes
place in various forms. In our experience, these approaches can be organized in a
number of levels. The approaches that we have identified are ranging from a standard-
ized infrastructure based on which products are created to a configurable product base
that can be used to derive a variety of products. Thus, for a set of products covering a
defined scope and that exhibit some commonality, an organization has a number of
alternatives for developing and evolving these products, in addition to developing each
product from scratch.

In figure 1, the different maturity levels are presented graphically. Starting from a
situation in which each product or application is developed independently, the main
maturity development path consists of a standardized infrastructure, a platform, a soft-

standardized
infrastructure

platform

software
product

line

configurable
product base

product
population

program of
product lines

independent
products

ware product line and finally a configurable product base. Two additional develop-
ments can be identified, i.e. product populations and a program of product lines. A
product population approach is chosen when the organization decides to increase the
scope in terms of the number of products. The program of product lines is selected
when the scope of the product line is extended in terms of the supported features. Typ-
ically, there is an overall architecture defining a set of components where each compo-
nent is again a software product line. In the sections below, the approaches are
described in more detail.

2.1 Standardized infrastructure

Description. The first step that an organization takes when evolving towards exploit-
ing commonality in its products is to standardize the infrastructure based on which the
products are developed. This infrastructure typically consists of the operating system
and the typical commercial components on top of it such as a database management
system and a graphical user interface. In addition, the organization may acquire some
domain-specific components from external sources. These components are typically
integrated through some proprietary glue code.

Domain versus application engineering. Typical for this approach is that although it
provides a first step towards sharing software artefacts, it requires no or very little
domain engineering effort. Except for creating and maintaining the glue code, which is
typically rather small compared to the size of the applications, all effort is directed to
application (or product) engineering.

Variability management. The common infrastructure contains no domain specific
functionality and therefore no variability management is necessary for the domain spe-
cific functionality. The infrastructure components may contain variations, but these
need to be managed as in traditional software development.

Example . An example of a company exploiting this approach is Vertis Information
Technology. This company develops administrative applications typically supporting
some technical production systems. Vertis typically builds its applications on top of a
Windows NT platform running the Oracle database system and associated tool set.
They have bought a number of domain specific components specific for the Dutch tax-
ation system. These components have been integrated with the Oracle tool set and the
operating system to form a rather advanced infrastructure based on which the applica-
tions are constructed.

2.2 Platform

Description. The next level in achieving intra-organizational reuse is when the organ-
ization develops and maintains a platform based on which the products or applications
are created. A platform typically includes a standardized infrastructure as discussed in

the previous section. On top of that, it captures all functionality that is common to all
products or applications. The common functionality that is not provided by the infra-
structure is implemented by the organisation itself, but typically the application devel-
opment treats the platform as if it was an externally bought infrastructure.

Domain versus application engineering . This approach typically requires a certain
amount of domain engineering effort to create and maintain the platform. The main
effort, however, is still assigned to application engineering. Although we discuss
organizational issues later in this paper, one can typically observe that the organiza-
tional model typically is not changed when the platform is adopted. The platform is
developed as a project by a team of persons from the different product units or by a
separate organizational unit, but it typically captures the functionality that is obviously
common to all products. Consequently, relatively little communication between the
products units and the platform developers is required. Although product units are
encouraged or even told to use the platform, this does not necessarily happen.

Variability management. Since the platform only captures the common functionality
of the products, there typically are relatively few variation points. A possible exception
may be provided by the variations that cross-cut all products, e.g. different infrastruc-
tures, secure versus non-secure versions, etc. Such variations that are common to all
products can be captured in and supported by the platform. Such variations need to be
managed explicitly.

Example . An example of a company employing the platform approach is Symbian
Ltd. The company develops the Symbian OS (earlier known as EPOC), an operation
system, application framework and application suite for personal digital assistants and
mobile phones. The Symbian OS is distributed in three device family requirement def-
initions (DFRDs), i.e. a landscape display communicator (640 x 200 pixels and up), a
portrait display communicator (approximately 320 x 240 pixels) and a smart phone
family. Each of these DFRDs is distributed to the licensees as a platform that has to be
extended with device specific functionality and licensee-specific applications.

2.3 Software product line

Description. Once the benefits of exploiting the commonalities between the products
become more accepted within the organization, a consequent development may be to
increase the amount of functionality in the platform to the level where functionality
common to several but not all products becomes part of the shared artefacts. Now we
have reached the stage of a software product line. Functionality specific to one or a
few products is still developed as part of the product derivation. Functionality shared
by a sufficient number of products is part of the shared product line artefacts, with the
consequence that individual products may sacrifice resource efficiency or develop-
ment effort for being part of the product line.

Domain versus application engineering. Typically, the amount of effort required for
domain engineering is roughly equal to the amount of effort needed for product devel-
opment or application engineering. Also, since the scoping of the features supported
by the shared product line artefacts is much more intimately connected to the features
supported by the products, explicit and periodic scoping and road mapping processes
are typically put in place.

Variability management . Once the product line stage has been reached, managing the
variability supported by the shared artefacts becomes a real challenge. Depending on
stability of the domain, the supported variation points change frequently, both in bind-
ing time (typically to a later stage) and the set of variants (typically extended). In most
cases that we have studied, however, there is no automated support for variability man-
agement.

Example . An example of an organization employing this approach is Axis Communi-
cation AB, Lund. At the time that we studied the company, it developed a range of net-
work devices such as scanner servers, printer servers, storage servers and camera
servers. These products were developed by as many business units and based on a set
of common software artefacts, i.e. a product line architecture and a set of more than 10
object-oriented frameworks that were used as configurable product line components.

2.4 Configurable product base

Description. Especially if the organization develops products in relatively stable
domains and derives many product instances, there is a tendency to further develop the
support for product derivation. The consequence is that the organization, rather than
developing a number of different products, moves towards developing only one con-
figurable product base that, either at the organization or at the customer site, is config-
ured into the product bought by the customer. Some companies use, for instance,
license key driven configuration, shipping the same code base to each and every cus-
tomer. The code base configures itself based on the provided license key.

Domain versus application engineering. Once the configurable product approach
has been fully adopted, all development effort has moved towards domain engineering.
Very little or no application engineering is provided because the product derivation
typically is supported by automated tools or techniques. As presented in figure 1, this
approach represents the highest maturity level.

Variability management. Since product derivation typically is automated once this
level is reached, all variation points have an explicit representation in the tool config-
uring the product for the particular instantiation. The variants for each variation point
are part of the configurable product base and adding new variants to variation points
during product derivation is most often not supported. A common characteristic for
companies applying this approach is that they understand the domain exceptionally

well and, due to that, are able to provide almost all variability a customer may want as
part of the delivered code base.

Example . An example of an organization applying this approach is Telelarm AB, sell-
ing fire alarm systems. After several years developing and evolving an object-oriented
framework for applications in the domain, the company reached the level where each
customer basically received the same code base. The persons performing the installa-
tion at the customer site are supported by a configuration tool that manages the cus-
tomer specific configuration of the product.

As described in the introduction to this section, two additional directions of evolution
can be identified. In these cases, the organization decides to extend the scope of the
product line in terms of the features covered by the product line or the set of products.
In the subsequent sections, these approaches are described in more detail.

2.5 Programme of product lines

Description. Especially for very large systems, the program of product lines approach
can be used. The approach consists of a software architecture that is defined for the
overall system and that specifies the components that make up the system. Several or
all of the components are software product lines. The result is a system that can be
configured as the configurable product described above. However, because of its size,
the configuration of the components is basically performed through product line-based
product derivation or by using the configurable product base approach.

Domain versus application engineering . The division of tasks between domain an
application engineering is similar to the basic software product line approach or con-
figurable product approach, depending on which approach is taken by the component
developers. However, the actual work when deriving a system is of course more in this
approach. First the overall architecture needs to be derived for the specific system. In
some cases, the architecture is constant for all derivations, but in others cases devia-
tions may occur, e.g. components are excluded. Subsequently, for each architectural
component, a derivation from the associated software product line needs to take place.
Finally, the system needs to be integrated and validated. These application engineering
activities may take substantial effort, depending on the amount of derivation support
that has been developed during domain engineering.

Variability management. Managing the complexity resulting from the amount of
available variability is typically a real challenge, although it depends on the approach
taken. The most complex cases often result from dependencies between variation
points in different software product lines in the system. Also, customer specific exten-
sions to the system may create difficulties as these may cross-cut the system’s overall
architecture.

Example . An illustrative example of this approach is provided by Nokia Networks.
The main product of this division are telecom switches. Each system consists of sev-
eral product families. These product families are developed on top of platforms that in
turn consist of reusable design blocks consisting of reusable components. A system
delivered to a customer requires selection and configuration of each of the aforemen-
tioned elements. Change management in this context is a highly complex endeavour.
Nokia Networks employs an approach that they refer to as System Feature Manage-
ment.

2.6 Product populations

Description. Whereas the approach discussed above extends the set of features cov-
ered by a single system, the product population approach extends the set of products
that can be derived from the shared product line artefacts. This does not refer to the sit-
uation where the same feature scope is populated with a more fine-grained set of prod-
ucts, but rather to the situation where the set of covered features is extended to allow
for a more diverse set of products to be derived.

Domain versus application engineering . An interesting consequence of this
approach is that the extent to which a predefined architecture can be imposed on each
product diminishes with this approach. Instead, the components need to be combined
in more diverse ways and need to be prepared for this during domain engineering. The
division between domain and application engineering is typically similar to that of
software product lines.

Variability management . The main difference between this approach and the afore-
mentioned approaches is the fact that variability is not just present within the compo-
nents, but also in the different ways in which components can be composed. Different
products may employ very different configurations. The component interfaces, conse-
quently, need to be prepared for being bound to various interfaces and may need to be
able to cope with smaller mismatches.

Example . Philips Consumer Electronics presents an excellent example of this
approach. As discussed in [9], Philips has adopted an approach where a set of compo-
nents can be used to derive a variety of different products, including analog televi-
sions, digital televisions, video recorders and digital set-top boxes. A number of teams
around the world develop components that adhere to the defined architecture and its
underlying principles. Other teams create individual products by selecting, composing
and configuring components.

3 Product Line Artefacts

One can identify three types of artefacts that make up a software product line, i.e. the
product line architecture, shared components and the products derived from the shared

artefacts. For each of these artefacts, one can identify three maturity levels, depending
on the level of integration achieved in the product line. Below, we discuss each artefact
in more detail.

The software architecture of the product line is the artefact that defines the overall
decomposition of the products into the main components. In doing so, the architectures
captures the commonalities between products and facilitates the variability. One can
identify three levels of maturity:

• Under-specified architecture: A first step in the evolutionary adoption of a
software product line, especially when converging an existing set of products,
is to first define the common aspects between the products and to avoid the
specification of the differences. This definition of the architecture gives exist-
ing and new products a basic frame of reference, but still allows for substantial
freedom in product specific architectural deviation.

• Specified architecture : The next maturity level is to specify both the common-
alities and the differences between the products in the software architecture.
Now, the architecture captures most of the domain covered by the set of prod-
ucts, although individual products may exploit variation points for product spe-
cific functionality. The products still derive a product specific architecture from
the product line architecture and may consequently make changes. However,
the amount of freedom is substantially less than in the under-specified architec-
ture.

• Enforced architecture : The highest maturity level is the enforced architecture.
The architecture captures all commonality and variability to the extent where
no product needs, nor is allowed, to change the architecture in its implementa-
tion. All products use the architecture as-is and exploit the variation points to
implement product specific requirements.

The second type of artefact is the product line component, shared by some or all prod-
ucts in the product line. Whereas the product line architecture defines a way of think-
ing about the products and rationale for the structure chosen, the components
contribute to the product line by providing reusable implementations that fit into the
designed architecture. Again, one can identify three levels of maturity for product line
components:

• Specified component: The first step in converging a set of existing products
towards a product line is to specify the interface of the components defined by
the architecture. A component specification typically consists of a provided, a
required and a configuration interface. Based on the component specifications,
the individual products can evolve their architecture and product specific com-
ponent implementations towards the product line thereby simplifying further
integration in the future.

• Multiple component implementations: The second level of maturity is where,
for an architectural component, multiple component implementations exist, but
each implementation is shared by more than one product. Typically, closely

related products have converged to the extent that component sharing has
become feasible and, where necessary, variation points have been implemented
in the shared components.

• Configurable component implementation : The third level is where only one
component implementation is used. This implementation is typically highly
configurable since all required variability has been captured in the component
implementation. Often, additional support is provided for configuring or deriv-
ing a product specific instantiation of the component, e.g. through graphical
tools or generators.

The third artefact type in a software product line is the products derived from the com-
mon product line artefacts. Again, three levels of maturity can be distinguished:

• Architecture conformance: The first step in converging a product towards a
product line is to conform to the architecture specified by the product line. A
product can only be considered a member of the product line if it at least con-
forms to the under-specified architecture.

• Platform-based product: The second level is the minimalist approach [1]
where only those components are shared between products that capture func-
tionality common to all products. Because the functionality is so common, typ-
ically little variability needs to be implemented.

• Configurable product base: The third level of maturity is the maximalist
approach [1], where all or almost all functionality implemented by any of the
product line members is captured by the shared product line artefacts. Products
are derived by configuring and (de-)selecting elements. Often, automated sup-
port is provided to derive individual products.

4 Organizational Models

In this section, we discuss a number of organizational models that can be applied when
adopting a software product line based approach to software development. Below, we
briefly introduce the models. For a more extensive discussion, we refer to [1].

• Development department: When all software development is concentrated in
a single development department, no organizational specialization exists with
either the product line assets or the products in the product line. Instead, the
staff at the department is considered to be resource that can be assigned to a
variety of projects, including domain engineering projects to develop and
evolve the reusable assets that make up the product line.

• Business units : The second type of organizational model employs a specializa-
tion around the type of products. Each business unit is responsible for one or a
subset of the products in the product line. The business units share the product
line assets and evolution of these assets is performed by the unit that needs to
incorporate new functionality in one of the assets to fulfil the requirements of

the product or products it is responsible for. On occasion, business units may
initiate domain engineering projects to either develop new shared assets or to
perform major reorganizations of existing assets.

• Domain engineering unit: This model is the suggested organization for soft-
ware product lines as presented in the traditional literature, e.g. Dikel et al. [4]
and Macala et al. [7]. In this model, the domain engineering unit is responsible
for the design, development and evolution of the reusable assets, i.e. the prod-
uct line architecture and shared components that make up the reusable part of
the product line. In addition, business units, often referred to as product engi-
neering units, are responsible for developing and evolving the products based
on the product line assets.

• Hierarchical domain engineering units: In cases where an hierarchical prod-
uct line has been necessary, also a hierarchy of domain units may be required.
In this case, often terms such as 'platforms' are used to refer to the top-level
product line. The domain engineering units that work with specialized product
lines use the top-level product line assets as a basis to found their own product
line upon.

Some factors that influence the organizational model, but that we have not mentioned
include the physical location of the staff involved in the software product line, the
project management maturity, the organizational culture and the type of products. In
addition to the size of the product line in terms of the number of products and product
variants and the number of staff members, these factors are important for choosing the
optimal model.

5 Relating Maturity Levels, Artefacts and Organization

In the previous sections, we have first discussed maturity levels of software product
lines. Subsequently, we discussed maturity levels for the product line artefacts, i.e.
architecture, components and products. Finally, we discussed the different organisa-
tional models that can be applied when employing software product lines. However,
the various maturity levels and approaches cannot be combined arbitrarily. In our
experience, certain combinations work well together where others do not. In table 2,
we relate the product line approaches to the artefact maturity levels and organizational
models that we have discussed. Although the absence of a ‘+’ or ‘+/-’ does not neces-
sarily indicate an incompatibility, these combinations are, in our experience, less likely
or require additional effort to achieve.
Below, we discuss the combinations in the table for each product line maturity level.
The standard infrastructure approach cannot impose more than an underspecified
architecture. Since the infrastructure typically only provides relatively generic behav-
iour, it cannot fully specify a software architecture for the product line. In addition, the
standard infrastructure can only specify the part of component interfaces that is con-
cerned with the functionality provided by the infrastructure. For instance, in the case of
an object-oriented database being part of the standard infrastructure, persistent compo-

nents need to support interfaces for persistence, queries and transactions. Products
based on the standard infrastructure only need to conform to the architectural restric-
tions imposed, but are free otherwise. Since the standard infrastructure requires little
effort from the organization, there is no need for a separate organizational unit taking
maintaining and evolving the shared artefacts. Consequently, the development depart-
ment and business unit organizational models are primarily suited for this approach.

The platform approach typically employs an underspecified architecture, because it
lacks the information about specific products constructed on top of the platform. Com-
pared to the standardized infrastructure approach, the platform architecture typically
demands more conformance from products in terms of architectural rules and con-
straints that have to be followed. Component interfaces are typically specified at least
partially and for the common behaviour, component implementations may be provided
by the platform. Products are constructed on top of the platform, as indicated in the
table. Platforms are typically created through the efforts of a dedicated domain engi-
neering team, but do not necessarily require the existence of a domain engineering unit
during the usage and evolution of the platform.

The software product line approach specifies a product line architecture that cap-
tures the commonalities and variabilities of the products. For each architectural com-
ponent, one or more component implementations are provided. For the more stable and

Table 2 Relating maturity levels to SPL artefacts and organisation

standard
infr.

platform SPL conf. prod.
base

product
popul.

program
of SPLs

u.spec. SA + + +

spec. SA + + +

enf. SA +

spec. C. +/- + +/-

mult. C.I. +/- + + +/-

conf. C. +/- + +

arch. conf. +

platf. b. P + + +

conf. P base + +

dev. dept. + + +

bus. units + + +

D.E. unit + + +

hier. DE units + +

well understood components, multiple implementations may have merged into one
configurable component implementation. Products are based on the product line, but
may deviate where necessary. We have worked with companies that employ widely
different organizational models, including the development department, business units
and domain engineering unit models.

The most domain-engineering centric approach centres around a configurable
product base. In this case, the architecture is enforced in that no product can deviate
from the commonalities and variabilities specified in the architecture. Consequently,
each architectural component typically has one associated configurable component
implementation and the products are derived from these artefacts by excluding those
parts not needed. A configurable product base is typically developed by a domain
engineering unit but since there are no associated application engineering units, the
organizational model is difficult to distinguish from the development department.

The product population approach increases the scope the product line in terms of
features and products. Due to the wide variety of products, the architecture cannot be
enforced. In addition, depending on the type of population, the architecture may even
not be fully specified, because part of the variability is achieved by creative configura-
tions of the components. There may be multiple component implementations, although
some components may need to be specifically implemented for each product. Espe-
cially in the case where the product population is organized into a number of smaller
sets, a hierarchical domain engineering unit model may be applied. Otherwise, a
domain engineering unit model is used.

The final approach, i.e. a program of product lines, extends the scope of individual
products in terms of the features. The overall architecture is typically well-specified as
it defines the interaction between the component product lines. The architectural com-
ponents are software product lines in themselves and, as such, typically rather config-
urable. Products are derived by configuring the product line components for the
specific context in which these are used. Due to the size of the overall system, the hier-
archical domain engineering unit model is typically employed.

6 Related Work

Software reuse is a long standing ambition of the software engineering community,
dating back to the late 1960s [8] and 1970s [10]. The increasing popularity of the
object-oriented paradigm during the 1980s lead to the definition of object-oriented
frameworks. As part of this work, for instance, the REBOOT project defined reuse
maturity levels [6].

During the 1990s, the notion of software product lines (or software system fami-
lies) was adopted and achieved increasing attention as can be judged from the software
product line initiative at the software engineering institute (SEI) [2] and several large
european projects, including ARES, PRAISE, ESAPS and CAFE.

Several authors published work in related to this paper. Weiss and Lai [11] present
an approach that relates to the maturity level that we refer to a configurable product
base. In their approach, a generator is developed that generates the specific product

derivation that is required. Czarnecki and Eisenecker [3] also employ generative tech-
niques to minimize the amount of application engineering needed.

7 Conclusions

Software product lines have received wide adoption in many software companies and
have proven to be very successful in achieving intra-organizational reuse. Traditional
literature to software product line based development typically takes one particular
approach. However, in our experience with industry we have identified that companies
employ widely different approaches and that these approaches evolve over time. These
approaches can be organized in a number of maturity levels. These maturity levels
include standardized infrastructure, software platform, software product line, config-
urable product base, program of product lines and product populations. For a given
scope in terms of features and products, each of the approaches can be applied. The
optimal approach for a company depends on the maturity of the organization, but also
on the maturity of the application domain.

Next to the different approaches to software product lines, we have also presented
maturity levels for the product line artefacts, i.e. the architecture, components and the
products. The product line architecture can be under-specified, fully specified or
enforced. The components can just consist of a component interface specification,
multiple component implementations and one configurable component implementa-
tion. Finally, a product can conform to the product line architecture, be a platform-
based product or be derived from a configurable product base. We discussed four alter-
native organizational models, i.e. the development department model, the business unit
model, the domain engineering unit model and the hierarchical domain engineering
unit model.

In section 5, we discussed the relations between the product line approaches, the
artefacts and the organizational models. We presented the more common and logical
combinations of approaches, maturity levels of artefacts and organizational models.

This paper is a first attempt to categorize the different approaches to software prod-
uct lines. In the future, we intend to further validate, refine and extend this taxonomy.

Acknowledgements

Many thanks to Osmo Vikman from Nokia who kindly provided information about the
program of product lines approach as used within Nokia Networks and to Rob van
Ommering for his information on the product populations approach.

References

[1] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product Line Approach, Pearson Education (Addison-Wesley & ACM Press),
ISBN 0-201-67494-7, May 2000.

[2] P. Clements, L. Northrop, Software Product Lines - Practices and Patterns,
Pearson Education (Addison-Wesley), ISBN 0-201-70332-7, 2001.

[3] K. Czarnecki, U.W. Eisenecker, Generative Programming - Methods, Tools
and Applications, Pearson Education (Addison-Wesley), ISBN 0-201-30977-
7, 2000.

[4] D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, 'Applying Software
Product-Line Architecture,' IEEE Computer , pp. 49-55, August 1997.

[5] J. van Gurp, J. Bosch, M. Svahnberg, 'On the Notion of Variability in Software
Product Lines,' Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), August 2001.

[6] E-A. Karlsson, Editor, Software Reuse - a Holistic Approach , John Wiley &
Sons, 1995.

[7] R.R. Macala, L.D. Stuckey, D.C. Gross, 'Managing Domain-Specific Product-
Line Development,' IEEE Software, pp. 57-67, 1996.

[8] M. D. McIlroy, ‘Mass Produced Software Components,’ in ‘Software
Engineering,’ Report on A Conference Sponsored by the NATO Science
Committee, P. Naur, B. Randell (eds.), Garmisch, Germany, 7th to 11th
October, 1968, NATO Science Committee, 1969.

[9] R. van Ommering, ‘Building Product Populations with Software
Components,’ Proceedings of ICSE 2002 (to appear), 2002.

[10] D.L. Parnas, ‘On the Design and Development of Program Families’, IEEE
Transactions on Software Engineering, Vol. SE-2, No. 1, March 1976.

[11] D.M. Weiss, C.T.R. Lai, Software Product-Line Engineering - A Family-
Based Software Development Process, Addison-Wesley, ISBN 0-201-69438-
7, 1999.

