
Software Product Family Evaluation

Frank van der Linden1, Jan Bosch2, Erik Kamsties3,
Kari Känsälä4, Henk Obbink5

1Philips Medical Systems,
frank.van.der.linden@philips.com

2University of Groningen,
Jan.Bosch@cs.rug.nl

3University of Duisburg-Essen,
kamsties@sse.uni-essen.de

4Nokia Research Center,
Kari.Kansala@nokia.com

5Philips Research Laboratories
henk.obbink@philips.com

Abstract. This paper proposes a 4-dimensional software product family engi-
neering evaluation framework. The four dimensions relate to the software engi-
neering concerns of business, architecture, organisation and process. The
evaluation framework is intended for use within software developing organisa-
tions to determine the status of their own software product family engineering
and the priorities for improving. The results of the evaluation can be used for
benchmarking, road mapping and developing improvement plans. An initial
evaluation of a real industrial case is presented to show the validity of the
framework.

Introduction

The main arguments for introducing software product family engineering are to: in-
crease productivity, improve predictability, decrease for time to market, and increase
of quality (dependability). To improve the overall system family engineering capabil-
ity in Europe a series ITEA projects on this topic is being executed, namely if99005
ESAPS (1999-2001), if00004 CAFÉ (2001-2003) and if02009 FAMILIES (2003-
2005) [7]. All authors are involved in all or some of these projects. The initial soft-
ware product family engineering evaluation framework was prepared during CAFÉ
[9]. In this paper, we provide an improved framework as well as a more extensive
explanation of the different development concerns in relation to software family engi-
neering. Within the recently started FAMILIES project, an improved and refined
version will be produced and tested. The framework has been developed based on
experiences from a wide variety of software product families and, in this paper, illus-
trated using a case within Philips Medical Systems.

The focus of this paper is on embedded systems. Software product family engi-
neering originated from embedded systems development, where product families
already existed. Software in embedded systems was originally introduced to improve

the flexibility and later for the introduction of more functionality. When the amount
of software was growing, the family engineering approach had to be applied on soft-
ware as well. As software behaves differently than other product assets, it was ini-
tially not clear how to deal with it. In the present paper we look at all concerns around
software product family engineering. Below we often denote products built by soft-
ware product family engineering. We refer then to embedded systems that have soft-
ware inside produced in a family-wise way. Our approach works, however, also for
pure software systems, but we have not seen many examples of such systems.

The remainder of the paper is organised a follows. In the next section, the BAPO
(Business, Architecture, Process, Organisation) model is introduced. BAPO is used as
a basis for the evaluation framework. Subsequently, the four evaluation dimensions
are discussed. Then a validation example is given. Related work is discussed fol-
lowed by a conclusion.

BAPO

Within the ITEA project ESAPS (Engineering Software Architectures, Processes and
Platforms for system family Engineering) we identified four interdependent software
development concerns, BAPO [1]:
1. Business, how to make profit from your products
2. Architecture, technical means to build the software
3. Process, roles, responsibilities and relationships within software development
4. Organisation, actual mapping of roles and responsibilities to organisational struc-

tures.
Fig. 1 gives an overview of the BAPO concerns. Links denote the interrelationships
between the concerns, which exist between all pairs. In principle, applying changes in
one concern is though, because it induces changes in the others. Arrows denote a
natural order to traverse the concerns, giving an order to the acronym as well. The
Business is the most influential factor. This has to be set up right in the first place.
The architecture reflects the business concerns in software structure and rules. The
process is set up to be able to build the products determined by the architecture. Fi-
nally, the organisation should host the process.

B
Business

O
Organisation

A
Architecture

P
Process

Fig. 1. The BAPO concerns

Through clarification of these dimensions, the ESAPS, CAFÉ and FAMILIES pro-
jects consider all concerns in the context of software product family engineering. In
fact, although architecture is an important topic for family engineering, the process
had a much larger emphasis in these projects, since it was often neglected in earlier
approaches. Due to the realisation that is it crucial for software family engineering to
address the business and organisation well, effort was also directed to these dimen-
sions, resulting in a more complete view of what is necessary for software product
family engineering.

We will use this separation of concerns to provide four dimensions of the family
evaluation framework. An organisation will have a separate evaluation level for each
of the BAPO concerns. The interdependence between the BAPO concerns becomes
obvious as soon as one studies the effects of changes. Changes in one dimension
virtually always have consequences for the other dimensions as well. In fact, actions
to improve the evaluation result for one concern may give rise to a lower evaluation
result for some of the others. Therefore, improvement actions have to consider all
BAPO concerns.

Through BAPO, our evaluation framework collects and structures characteristics of
a software production unit, division, or company, which are proven by experience to
be effective. It is based on the experience of the companies involved in the aforemen-
tioned ITEA projects, and as such, it consolidates a large body of knowledge. The
purpose of the model is to:
1. Serve as benchmark for effective software product family engineering
2. Support assessments of software product family engineering for capability evalua-

tions of software production units, divisions, or companies
3. Support software product family engineering improvement, which involves pro-

ducing of assessments and improvements plans
The result of the evaluation, i.e. an evaluation profile, is the representation of soft-

ware product family engineering evaluation for an organisation, represented in four
separate evaluation scales for Business, Architecture, Process, and Organisation
evaluation.

Setting the target evaluation profiles for improvement of software product family
engineering has to include the consideration of possible dependencies and tradeoffs
between the evaluation dimensions.

In the next sections, we will describe the different evaluation levels for each of the
different BAPO concerns. Subsequently, we describe the relationships and influences
between these concerns. Finally, the evaluation framework is validated and illustrated
using a case.

 Business Dimension (BAPO-B)

The business evaluation dimension deals with the ability of an organisation to man-
age, predict and steer the cost and the profit of the development. The cost is depend-
ent on the architecture process and organisation chosen. The profit relates to the cus-
tomer satisfaction and the market position.

For our purposes, the main concern lies in the way an organisation can determine
what are the costs any pay-offs of a software product family engineering approach.
The organisation should be able to determine whether and how it should invest in
software family engineering, for which products and in which order. It should be able
to understand and quantify the necessary investments in software family engineering.
A well-organised organisation has only one mission and a well defined set of objec-
tives. The software family engineering should fit in them.

When a software family engineering approach is chosen, the business goals should
be in alignment with the software family engineering goals in order to improve the
competitiveness. One of the questions addressed by the business aspect is scoping
[12], which deals with the question what products should be subject to software fam-
ily engineering, and why, based upon market and technology expectations.

In the evaluation framework, four main aspects are used in the evaluation of the
business dimension. The selection of these aspects are a first guess, but are related
with important aspects recognised in business literature. These aspects are partially
dependent of each other. Often a higher level for one aspect corresponds to higher
levels for the others as well.
1. Identity: How well has the organisation formulated an identity relating to software

family engineering? Low levels for this aspect correspond to software product fam-
ily engineering that is not visible in the identity. At higher levels for this aspect,
there have to be a strong relationship between the development of the products and
the identity. For instance, the similarity between the products is visible at market-
ing level and is used in communication of the management to the employees and
customers.

2. Vision: How well does the organisation aims for a future where software product
family engineering fits? At lower levels for this aspect, the software product family
engineering is not present in the vision. At higher levels for this aspect, the pres-
ence of software family engineering is available in the determination of the future
goals, and communicated towards the customers.

3. Objectives: How well does the organisation determine its future goals, aimed at
marketing and selling what the software family engineering produces? At lower

levels, there is no specific marketing for similar products based upon reusable plat-
forms available. At higher levels products in the family will be marketed as such,
aiming to sell family members instead is one-of-a-kind systems.

4. Strategic planning: How well does the organisation plan the family business and
development? At lower levels, there is no specific planning available for the soft-
ware family engineering. At higher levels, roadmaps of what will be developed are
available and used.

Below, we present a five level structure. This structure is more refined than the one
presented in [9]. The levels are:
1. Reactive - The business does not actively influence the software family engineer-

ing. Instead, it reacts upon the situation.
2. Awareness - The business is aware of the software family engineering. However,

it does not know the right instruments to influence and use it for the business sake.
3. Extrapolate - The business is extrapolating on the results of the software family

engineering. It influences software family engineering for obtaining business goals.
4. Proactive - The business is proactively planning and managing the software family

engineering and the business goals to obtain the best business results out of it.
5. Strategic - The software family engineering is a strategic asset for reaching the

business goals.
In the following, we discuss each level in more detail

Level 1: Reactive

The business does not actively influence the software family engineering. Instead, it
reacts upon the situation.
1. Identity: implicit
2. Vision: short term (just cash flow)
3. Objectives: missing
4. Strategic planning: missing
This is the basic level for the business dimension. The identity of the organisation is
derived from the activities it happens to perform. If there is software family engineer-
ing, it is not visual at the business level. There is no software family engineering
vision. The objectives and business planning process do not support software family
engineering. Reuse of assets in product development is mainly for opportunistic rea-
sons. Decisions whether to make or to buy assets, or obtain them differently, are only
taken for opportunistic reasons. There is no strategy to align marketing to software
family engineering. Products from the family are marketed just as any other product.

Level 2: Awareness

The business is aware of the software family engineering. However, it does not know
the right instruments to influence and use it for the business sake.
1. Identity: available
2. Vision: short to medium term
3. Objectives: partially, and qualitative

4. Strategic planning: ad hoc process
At this level, there is awareness of the software product family engineering at the
business level. The business sees the benefits of software family engineering for the
short or medium term, but is unable to connect it to all relevant objectives of the or-
ganisation. There is no strategic plan in relationship to software family engineering.

Level 3: Extrapolate

The business is extrapolating on the results of the software family engineering. It
influences software family engineering for obtaining business goals.
1. Identity: identified
2. Vision: medium term
3. Objectives: qualitative
4. Strategic planning: ad hoc process
At this level, planning for the software product family engineering is available. Scop-
ing is performed to determine the borders of the product range and roadmaps are used
to plan the software product family engineering and to decide upon making assets, or
obtaining them differently. Often the roadmaps are based upon business and techno-
logical scenarios. On a regular basis, the roadmaps and scopes are updated.

There is an ad hoc strategy to align marketing to software family engineering.
Products produced are predominantly marketed as any other product. However, the
long-term vision of the marketing department is taken into account in scoping and
family planning.

Level 4: Proactive

The business is proactively planning and managing the software family engineering
and the business goals to obtain the best business results out of it.
1. Identity: communicated
2. Vision: medium/long term
3. Objectives: partially quantitative
4. Strategic planning: defined process
At this level, decisions are based on partial cost models. Scoping is based upon expec-
tations of parameters of the software family engineering effort. Roadmaps are based
on intra-company agreements, time-to-market estimations and on profit expectations.
Scope definitions and roadmaps are maintained locally and communicated with other
departments of the company. Expectations on resources as well as key and core tech-
nologies for the company influence decisions upon develop family assets, or to buy,
mine, or commission assets.

There is a process available to align marketing to software family engineering. The
marketing long-term vision is adapted according to the family planning.

Level 5: Strategic

The software family engineering is a strategic asset for reaching the business goals.
1. Identity: managed
2. Vision: long term
3. Objectives: quantitative
4. Strategic planning: institutionalised process
Once the business dimension has the highest maturity, decisions are based on quanti-
tative cost models. Scoping is based upon quantitative predictions on the return of
investment of the software family engineering effort. Roadmaps are defined based on
intra-company agreements, time-to-market estimations and profit expectations. Scope
definitions and roadmaps are aligned between the different units within a single com-
pany. Resource availability, key and core technology for the company, time-to-market
expectations, and profit and cost models influence decisions upon develop family
assets, or to buy, mine, or commission them.

Marketing aligns with software family engineering. The family is marketed as a
whole and the position of the product in the family is part of the marketing strategy.
New products requiring little development effort are actively promoted. Products that
involve expensive developments, e.g. due to architectural mismatches, are avoided.

Architecture Dimension (BAPO-A)

Software product families architecture differs significantly from architecture in single
product development. It is essential to detect, design and model the variable and
common parts of the software family engineering, i.e. software variability is a key
concern. Variability management needs to start during requirements engineering.
Common parts will useably be implemented as a reusable platform, where the vari-
able parts fit in at explicit variation points.

Software product families development is aimed at a dynamic set of resulting
products. Platform technologies typically evolve very rapidly. Because of this, sys-
tems in production cannot be re-implemented for each change in technology. In paral-
lel, the quality of products within the family needs to be improved and product vari-
ants have to be delivered in shorter times. This results in a need for software architec-
tures that will enable us to move to new emerging platforms against a minimal in-
vestment.

The technological approach taken to the development of software products varies
substantially between different organisations. From our experience, these approaches
can be categorised in five levels [3], where the first level exhibits no sharing of soft-
ware artefacts and the highest level requires no product specific software develop-
ment. The preferred approach for an organisation depends on the business goals that
the organisation aims to achieve with the software family engineering as well as the
application domain of the software products and the maturity of the organisation in
the process and organisation dimensions.

In our experience, one can identify four aspects that define the five approaches to
the technology of the software product family engineering. As with the business di-

mension, the aspects are partially dependent of each other. Higher level for one aspect
often goes together with higher levels for the others as well. Below these aspects are
discussed in more detail:
1. Software product family architecture: The software product family architecture

can exist at several levels. The level determines what is shared and not shared
amongst the produced products. The higher level, the influence of the architecture
on the development increases. It is not the case that higher levels of software prod-
uct family architecture mean larger amounts of shared software between the prod-
ucts. At low levels, the software product family architecture may only make a dis-
tinction between infrastructure and product-specific components. At higher levels
the software architecture is enforced.

2. Product quality: The quality of the set of products as a whole is, at lower levels,
typically accidental as all attention is towards providing the right functionality.
With increasing levels, quality is managed increasingly explicitly within the archi-
tecture.

3. Reuse levels: The reuse level indicates the amount of relative effort that is spent on
producing shared, reusable assets, when compared to application or product engi-
neering.

4. Software variability management: At lower levels, the management of the soft-
ware variability is mainly focusing on supporting compile-time and link-time bind-
ing. At higher levels the complete software life cycle is taken into account, deter-
mining when to introduce and bind which variability, and which mechanism should
be used.

We have defined the following level structure. Below we discuss them in more detail:
1. Independent Product Development – There is no software family engineering.

Instead, products are developed independently.
2. Standardised Infrastructure – The family architecture focuses itself on the stan-

dardisation of the infrastructure.
3. Software Platform – The family architecture defines a software platform to be

used as basis for the development of the products.
4. Variant Products – The family architecture determines the construction of variant

products.
5. Self-configurable products – The family architecture defines pervasive rules,

which enable automatic selection of assets to configure products.

Level 1: Independent Product Development

There is no software family engineering. Instead, products are developed independ-
ently.
1. Software product family architecture: not established
2. Product quality: ignored or managed in an ad-hoc fashion
3. Reuse level: although ad-hoc reuse may occur, there is no institutionalised reuse
4. Software variability management: absent
An organisation developing products independently has no sharing of external or
internal software artefacts. The commonality between products is not exploited.

Level 2: Standardised Infrastructure

The family architecture focuses itself on the standardisation of the infrastructure.
1. Software product family architecture: specified external components
2. Product quality: infrastructure supports certain qualities, for the remaining quali-

ties an over-engineering approach is used
3. Reuse level: only external components
4. Software variability management: limited variation points from the infrastructure

components
The first step that an organisation typically takes when evolving towards exploiting
commonality in its products is to standardise the infrastructure based on which the
products are developed. This infrastructure typically consists of the operating system
and the typical commodity components on top of it such as a database management
system and a graphical user interface. In addition, the organisation may acquire some
domain-specific components from external sources. These components are typically
integrated through some proprietary glue code.

Level 3: Software Platform

The family architecture defines a software platform to be used as basis for the devel-
opment of the products.
1. Software product family architecture: only the features common to all products

are captured
2. Product quality: inherited from the platform
3. Reuse level: reuse of internal platform components
4. Software variability management: managed at platform level
As a first step in achieving intra-organisational reuse of software artefacts the organi-
sation may develop, maintain and evolve a platform based on which the products or
applications are created. A platform typically includes a standardised infrastructure as
a basis, as discussed in the previous section that typically contains generic functional-
ity. On top of that, the platform captures domain functionality that is common to all
products or applications. The common functionality that is not provided by the infra-
structure is implemented by the organisation itself, but typically, the application de-
velopment treats the platform as if it was an externally bought infrastructure.

Level 4: Variant Products

The family architecture determines the construction of variant products.
1. Software product family architecture: fully specified
2. Product quality: a key priority for development
3. Reuse level: managed
4. Software variability management: many variation points and dependencies be-

tween them
Once the benefits of exploiting the commonalities between the products become more
accepted within the organisation, a consequent development may be to increase the

amount of functionality in the platform to the level where functionality common to
several but not all products becomes part of the shared artefacts. Now we have
reached the stage of variant products. Variation is managed strictly, and functionality
specific to one or a few products is still developed as part of the product derivation.
Functionality shared by a sufficient number of products is part of the shared artefacts,
with the consequence that individual products may sacrifice resource efficiency for
development effort offered by the software family engineering. In addition, all prod-
ucts are developed based on the defined family architecture. In particular, it specifies
how and when to configure variants.

Level 5: Self-configurable products

The family architecture defines pervasive rules, which enable automatic selection of
assets to configure products..
1. Software product family architecture: enforced
2. Product quality: quality attributes are implemented as variation points in the ar-

chitecture and components
3. Reuse level: automatic generation of software family engineering members
4. Software variability management: automated selection and verification of vari-

ants at variation points has been optimised
Especially if the organisation develops products in relatively stable domains and de-
rives many product instances, there is a tendency to further develop the support for
systematic product derivation. The consequence is that the architecture is enforced for
all the products, and derivation is performed through application of the defined rules.
Large parts of the product derivation can be automated, and/or be performed at the
customer’s site.

Process Dimension (BAPO-P)

The process dimension emphasizes the process, roles, work products, and correspond-
ing responsibilities and relationships within software development. Because the CMM
(for Software) and its current successor CMMI [5], [6] is the de-facto standard in
assessing and evaluating software processes, then CMMI is the most natural choice to
be basis for the software product family engineering evaluation approach in the
BAPO-P dimension. Of course, the practices for software family engineering are
more extensive and more special which is a basis for further refinement, many of the
ITEA project’s best practices [8] and the work of the SEI on software product-line
engineering [4] have to be considered as input.. The levels of the CMMI (Staged
Representation) are briefly introduced (using original texts from [6] in the following
by utilising the following aspects to depict their differences:
1. Predictability: How predictable is software development at each level.
2. Repeatability: How repeatable is the development process at each level.
3. Quantifiability: How quantifiable is software development.
The staged representation of the CMMI [6] offers its maturity levels to be used also in
the software product family engineering context. We do not go into details here, be-

cause we just follow the CMMI terminology. For software family engineering the
different stages will have different focus areas and/or basic practices.
1. Initial – There is no managed and stable process available. Development proceeds

in an ad hoc way.
2. Managed – There are planned processes available.
3. Defined – Processes adhere to standards.
4. Quantitatively managed – Processes are quantitatively tracked, and improved.
5. Optimising – Processes are continuously improved based on quantitative data.

Level 1: Initial

There is no managed and stable process available. Development proceeds in an ad hoc
way.
1. Predictability: unpredictable
2. Repeatability: not repeatable at all, i.e. there is no related learning in the organisa-

tion.
3. Quantifiability: no data available about past projects.

Level 2: Managed

There are planned processes available.
1. Predictability: tolerably
2. Repeatability: good practices can be applied and bad practices can be avoided
3. Quantifiability: data available on past projects
There are planned processes available guiding the work of the development. Their
execution is measured to determine problems in time. No explicit tracking and learn-
ing is available. For most CMMI-identified practices at this level there will have spe-
cific consequences for software product family engineering. Many of them stem from
the interconnection of different processes, and the distinction between common and
variable software.

Level 3: Defined

Processes adhere to standards.
1. Predictability: satisfactorily
2. Repeatability: process is tailored from the organisational software process
3. Quantifiability: data available on past projects, and analysed to be more effec-

tively utilised by next projects
Processes adhere to standards, which are improved over time. Process measurements
are used for process improvement. For most CMMI-identified practices at this level
there will have specific consequences for software product family engineering. Many
of them stem from the interconnection and the continuity of different processes and
the use of common software over project boundaries.

Level 4: Quantitatively Managed

Processes are quantitatively tracked, and improved.
1. Predictability: very predictable
2. Repeatability: process is tailored from the organisational software process with

corresponding quantifiable data
3. Quantifiability: software development data from past projects have been packaged

into quantified models to be used to estimate and predict next projects
Processes are quantitatively tracked, and improved. The organisation adheres to these
processes. It is not clear whether software product family engineering has much im-
pact at this level. It may well be that just doing software product family engineering
eases the execution of this level.

Level 5: Optimising

Processes are continuously improved based on quantitative data.
1. Predictability: extremely predictable
2. Repeatability: fully repeatable given the commonality and variability between

past and new projects
3. Quantifiability: process of new projects can be optimised based on data and corre-

sponding analysis on past projects
Processes are continuously improved based on a quantitative understanding of the
common causes of variation inherent in processes. Just as for level 4, it is not clear
whether software product family engineering has much impact at this level. It may
well be that just doing software product family engineering eases the execution of this
level.

Organisational Dimension (BAPO-O)

The organisational dimension deals with the way the organisation is able to deal with
complex relationships and many responsibilities. This dimension is refined with re-
spect to [9] and combined with the taxonomy presented in [2].

Software family engineering results in separation of activities, often over organisa-
tion borders. Not only the software assets are shared over these borders, but also other
artefacts such as development plans and roadmaps. This means that the organisation
should have individuals or teams that are responsible for the interaction of the shared
artefacts between the different parties involved in the development.

Despite the emergence of a variety of technological solutions aiming at reducing
the effects of geographical location the physical location of the staff involved in the
software product family engineering still plays a role. It simply is more difficult to
maintain effective and efficient communication channels between teams that are in
disparate locations and, perhaps even, time zones, than between teams that are co-
located. Therefore, units that need to exchange much information should preferably
be located closer to each other than units that can cooperate with less information.

Three aspects can be identified which influence the evaluation in the organisational
dimension:
1. Geographic distribution: How complex is the geographic distribution of the soft-

ware family engineering organisation: local projects, and departments, company-
wide or even over company borders.

2. Culture: What are the shared values related to the software family engineering:
internally or cooperative focused, individual- or central-valued, conservative vs.
innovative, product vs. process focused

3. Roles & Responsibilities: How well does the organisation manages the distinct
responsibilities and relationships occurring in the software family engineering: un-
differentiated vs. specialised roles for software family engineering

4. Product life cycle: An important factor influencing the optimal organisational
model is the type of systems that are produced, in relationship to the characteristics
of the product life cycle. Factors that play a role is the length of the life cycle, the
pace of the generations and the kind of maintenance that is provided.

We have defined the following level structure. Below we discuss them in more detail:
1. Unit oriented – The software family engineering takes place within single, small

development units.
2. Business lines oriented – The software family engineering takes place within

several units of a business line, responsible for a single range of products.
3. Business group/division – The software family engineering takes place over busi-

ness line borders within a single business group or product division, responsible for
many business related products.

4. Inter-division/companies – The software family engineering takes place between
several divisions and companies, within mutual trust, each with their own commer-
cial responsibility, which may be conflicting.

5. Open business – The software family engineering is not restricted to a collection
of companies that trust each other. The open business involves everybody who sees
the advantage.

Level 1: Unit oriented

The software family engineering takes place within single, small development units.
1. Geographic distribution: local projects
2. Culture: internally focused
3. Roles & Responsibilities: software family engineering undifferentiated
4. Product life cycle: medium term
This level is referred to as “development department” in [2]. In this model, software
development is concentrated in a single development department. No organisational
specialisation exists with either the software product family engineering assets or the
systems in the family. The model is especially suitable for smaller organisations. The
primary advantages are that it is simple and communication between staff members is
easy, whereas a disadvantage is that it does not scale to larger organisations.

The internally focused culture supports the trust and respects that people have for
each other, leading to ease in the distribution of work, and taking over work from

each other. The products have a medium or long life span, with no large maintenance
commitments, resulting in only a low maintenance burden on the developers.

Level 2: Business lines oriented

The software family engineering takes place within several units of a business line,
responsible for a single range of products.
1. Geographic distribution: multiple application engineering units
2. Culture: cooperative within business line
3. Roles & Responsibilities: software family engineering roles and asset roles
4. Product life cycle: medium to long term
In [2], this level is called “Business units”. The software family engineering takes
place in a single business line involving several development units. An advantage of
the model is that it allows for effective sharing of assets between a set of organisa-
tional units. A disadvantage is that business units easily focus on the concrete systems
rather than on the reusable assets.

Often each development unit is assigned the additional responsibility for evolving
a subset of the domain assets, which are to be reused by the other application units.
People are relatively close to each other, but the number of developers within the
family is large, and therefore specialisation is necessary. In particular, the roles for
software family engineering and application development are recognised and distrib-
uted. People are assigned to be responsible for the maintenance of certain family
assets, such as components, or the architecture. In this situation, specific departments
in the units, allowing longer life cycles of the products, can conduct product mainte-
nance.

Level 3: Business group/division

The software family engineering takes place over business line borders within a single
business group or product division, responsible for many business related products.
1. Geographic distribution: multiple units within one company
2. Culture: cooperative across business lines
3. Roles & Responsibilities: coordinated roles across business lines
4. Product life cycle: short to long term
This level is referred to as “Domain engineering unit” in [2]. At this level, the soft-
ware family engineering takes place over different business lines within a single busi-
ness group or division. A domain-engineering unit is responsible for the design, de-
velopment and evolution of the reusable assets. Product engineering units are respon-
sible for developing and evolving the products built based on the software family
engineering assets. The model is widely scalable, from the boundaries where the
business unit model reduces effectiveness up to hundreds of software engineers. An-
other advantage of this model is that it reduces communication from n-to-n in the
business unit model to 1-to-n between the domain engineering unit and the system
engineering units. Finally, the domain engineering unit focuses on developing gen-

eral, reusable assets which addresses one of the problems with the aforementioned
model, i.e. too little focus on the reusable assets.

Level 4: Inter-division/companies

The software family engineering takes place between several divisions and compa-
nies, within mutual trust, each with their own commercial responsibility, which may
be conflicting.
1. Geographic distribution: consortium-based cooperation over company borders
2. Culture: externally focused
3. Roles & Responsibilities: liaison roles (between companies)
4. Product life cycle: short to long term
This level is called “Hierarchical domain engineering units” in [2]. However, it gen-
eralises to many kinds of engineering structures. At this level, the development is
spread over several co-operating companies. Some of them will act as subcontractor
of others. In particular, this applies when different companies serve different parts of
the domain. The structure is necessary to distribute the workload of the domain engi-
neering. This model is applicable especially in large or very large organisations with a
large variety of long-lived systems. The advantage of this model is that it provides an
organisational model for effectively organizing large numbers of software engineers.

Level 5: Open business

The software family engineering is not restricted to a collection of companies that
trust each other. The open business involves everybody who sees the advantage.
1. Geographic distribution: industry-wide cooperation
2. Culture: extremely cooperative, competitive
3. Roles & Responsibilities: lobbying, marketing, standardization bodies
4. Product life cycle: very short to very long term
At this level, there is an open standard for the structured software family engineering.
Several companies improve parts of the family through additions adhering to the
standard. Often, but not necessarily (see open source), a single company is strong
enough to set the standard.

Illustrative example

In this section, we take the development described in [7] to provide an example for
evaluation and validation purposes. Although our evaluation framework is clearly not
finished, it may already be useful to get initial ideas about its merits. The example
development is about a Family of Magnetic Resonance Imaging Scanners. Magnetic
resonance imaging (MRI) is based on the principles that nuclear magnetic relaxation
times of different tissues differ, which opted magnetic resonance for scanning the
inside of the human body.

A warning is in place here. We did not do a formal assessment of the development
described here. The evaluation of the example below is done in a very global way,
since for most of the dimensions there is not yet a set of precise criteria available.
These still have to be determined. This is a result we aim for next year. However, the
result gives an indication what will be the evaluated level of the development, and
where the focus on improvements will be.

Business dimension

1. Identity – This is very clear, the business is to provide high quality MRI scanners
to the hospitals. The scanners are organised in families at the business level.

2. Vision – It is recognised that a software family engineering approach will improve
the quality and time-to-market of the products. Resulting in a medium term vision.

3. Objectives – The objectives for doing software family engineering within the
business are mainly qualitative

4. Strategic planning – The business has a process in place for planning the family
Based upon these finding we come to a level 3 at the business dimension.

Architecture dimension

1. Software product family architecture – This is enforced within the organisation
2. Product quality – Quality is tracked from stakeholders towards assets and tests
3. Reuse levels – The reuse is managed through many architectural guidelines, rules

and frameworks.
4. Software variability management – There are many variation pints, and they are

managed through the architecture.
Based upon these finding we come to a level 4 at the architecture dimension.

Process dimension

The organisation is assessed to be of CMM level 3. Of course, this does not mean that
for the family specific point of view the process level would be 3, but presumably it
is, however, close to this level.

Organisation dimension

1. Geographic distribution – The development as discussed here is part of a devel-
opment within several units within one company.

2. Culture – cooperation over business lines.
3. Roles & Responsibilities – coordination across business lines
4. Product life cycle – Very long life cycle. Separate departments for maintenance,

distributed development within company borders, the development are parts of a
structured software family engineering.

Based upon these finding we come to a level 3 at the organisation dimension.

Concluding we arrive with total assessment results in a profile of B3 A4 P3 O3, i.e.
intermediate in all dimensions. This may be very satisfactory for this business, as all
dimensions are taken into account. This result implies that none of the dimensions is
stressing too far with respect to the others. If the products are serving a mature prod-
uct domain where the group itself can be seen as shaper of the business itself, more
effort may be put into the business dimension, moving towards level 4. If this grows,
the process and organisation can grow to level 4 as well. The precise choice for im-
provement actions is however, also dependent on the wishes and the goals of the
development organisation itself. Please note that this assessment result does not re-
flect the actual maturity of the business group. It is intended for illustrative purposes
only. However, the software product family engineering maturity model offers a
highly useful technique for evaluating software-developing organisations that employ
product families.

Looking back: related work

Since the late 80ies, a number of capabilities evaluation models have been developed
for various fields of assessment including systems engineering, software engineering,
software acquisition, workforce management and development, and integrated prod-
uct and process development. The overall idea is to compare a process carried out by
an organisation to an ideal that is presented by a capability evaluation model. Process
improvement is the elimination of differences between the current and the ideal proc-
ess. This approach can be characterised as normative, top-down. The assumption
behind this approach is that improved processes led themselves to improved products.

The most prominent process improvement framework is the Capability Maturity
Model (CMM), which was developed by the Software Engineering Institute (SEI) and
published in 1993 [5], [11]. The “non-US” counterpart to the CMM is the Interna-
tional Organisation for Standardization/International Electrotechnical Commission
(ISO/ IEC) 15504 Standard for Software Process Assessment (commonly called
SPICE). For systems engineering, the SE-CMM and later on the Electronic Industries
Alliance Interim Standard EIA/IS 731 were developed. The CMMI (CMM Integrated)
[6] has been created recently by the SEI to integrate the SEI’s Capability Evaluation
Model for Software (SW-CMM), EIA/IS 731, and Integrated Product Development
Capability Evaluation Model (IPD-CMM) into a single coherent process improvement
framework [5] [6]. Some of the developments resulting in the CMMI are shown in
Fig. 2.

CMMI

CMM

ISO 900x

ISO 15504

EIA/IS 731

1990

2000

Fig. 3. History of Process Improvement Frameworks

The SEI’s Product Line Technical Probe (PLTP) allows examining an organisation's
readiness to adopt or its ability to succeed with a software product family engineering
approach. The PLTP is based on the SEI's Framework for Software Product Line
PracticeSM (version 4.0 was published in [4]) as a reference model in collection and in
analysis of data about an organisation. The results of applying the PLTP include a set
of findings, which characterize an organisation's strengths and challenges relative to
its Product Line effort, and a set of recommendations..

The Framework for Software Product Line PracticeSM distinguishes 29 practice ar-
eas, which are divided loosely into three categories [10]. Software engineering prac-
tice areas are necessary to apply the appropriate technology to create and evolve both
core assets and products. Technical management practice areas are those management
practices necessary to engineer the creation and evolution of the core assets and the
products. Organisational management practice areas are necessary for the synchroni-
zation of the entire software product family engineering activities.

Our model is an improvement with respect to the Framework for Software Product
Line PracticeSM in the fact that it clearly separates the distinct BAPO development
concerns. The focus of the SEI framework is mainly on what we call process con-
cerns, because the practice areas of the SEI framework roughly cover the different
issues addressed by the CMMI, engineering, support, process and project manage-
ment. We have identified architecture, business, and organisation aspects as important
as the process, which will be pursued to get a better understanding of them. Another
important difference between the SEI framework and our model is their structure. The
SEI framework does not comprise any levels, which imply a direction of improve-
ment, while our model offers levels and is thus also suitable for benchmarking and
road mapping.

System& Application Testing

Application Engineering

System
Definition

Application
Implementation

Application
Design

Application
AnalysisSystem

Analysis/Design

System
Economical

Analysis

Derivation Activities

Domain Engineering
Domain Testing

SF Scoping Domain Design
Domain

Implementation
Domain
Analysis

Domain System
Analysis/Design

SF Economical
Analysis

R
e
v
e
rs

e
 E

n
g

in
e
e
ri

n
g

SF Reverse Engineering Activities

Configuration
Management Change

ManagementCore Assets

Traceability

System Family
Engineering

Fig. 4. CAFE Process Reference Model

The Information Technology for European Advancement (ITEA) project CAFÉ
(From Concepts to Application in System-Family Engineering) has developed a refer-
ence framework for software family engineering practices (CAFÉ-RF) [7]. The
CAFÉ-RF takes into account the different BAPO aspects, and consists of several
models: a reference IT life-cycle for system families (identifies the major phases in an

IT organisation when carrying out a system family effort), a process reference model
(CAFÉ-PRM, represents major engineering activities operating on the core assets)
shown in Fig. 5., and an asset reference model (CAFÉ-ARM, represents the major
assets of interest). The reference process model in Fig. 3 only shows the most impor-
tant activities on software family engineering, grouped according to the domain engi-
neering (development for reuse) at the bottom, application engineering (development
with reuse, for customers) at the top and supporting processes for asset management
in the middle. No explicit flows between activities are depicted since these can
change over and within organisations. Application engineering processes are put at
the top, since they are the most important business concerns. Domain engineering and
asset management are supporting, and only necessary for an efficient software family
engineering process.

Conclusion and Future Work

This paper improves the evaluation frameworks for software family engineering pre-
sented in [9] and [3]. The framework serves for benchmarking the organisation
against others, enable assessments for single organisations and provide directions for
improvement. As there are four groups of development concerns (BAPO) we have
defined four distinct evaluation scales. Evaluation of an organisation will lead to a
profile with separate values for each of the four scales. Depending on the organisation
context there will be an optimum profile for that organisation, i.e. top marks for each
dimension may not be optimal from a business and economic perspective. The organi-
sation may use the framework to find whether it has the optimum profile. In case it
does not have the right profile, it helps to select those actions that should be done in
order to reach the optimum. Care should be taken that improvement actions for one of
the profile scales may lead to reduction of the values for the other scales.

We plan to improve the present evaluation framework by providing more details,
and clear descriptions, taking into account the practices in present industrial software
product family engineering. This improvement will mainly performed in the ITEA
FAMILIES project.

Acknowledgments

We thank Lech Krzanik, for the discussions and during the Dagstuhl Seminar 03151
on Product Family Development, April 6 – 11, 2003, Schloss Dagstuhl, Wadern,
Germany. These discussions were the basis of the fist paper [9] on the framework in
which all have contributed. Moreover we thank Klaus Pohl, Peter Knauber, Linda
Northrop, and Günter Böckle who were co-organizers (with Frank van der Linden) of
this Dagstuhl seminar, facilitating the discussions. Finally, we thank all involved in
the ITEA projects ESAPS, CAFÉ and FAMILIES presenting and discussing best
practices in family engineering in many workshops and other meetings. There are too
many people involved in these projects to name them all.

References

[1] Pierre America, Henk Obbink, Rob van Ommering, Frank van der Linden, CoPAM:
A Component-Oriented Platform Architecting Method Family for Product family En-
gineering, Proceedings SPLC-1 pp. 167-180

[2] Jan Bosch, Software Product Lines: Organisational Alternatives, Proceedings of the
23rd International Conference on Software Engineering (ICSE 2001), pp. 91-100,
May 2001.

[3] Jan Bosch, Maturity and Evolution in Software Product lines: Approaches, Artefacts
and Organisation, Proceedings of the Second International Conference on Software
Product Lines (SPLC 2), Springer LNCS 2379 pp. 257-271, August 2002.

[4] Clements, Paul; Northrop, Linda; Software Product Lines – Practices and Patterns,
Addison Wesley, 2001.

[5] CMMISM for Systems Engineering/Software Engineering/Integrated Product and
Process Development/Supplier Sourcing, Version 1.1, Continuous Representation
(CMMI-SE/SW/IPPD/SS, V1.1, Continuous), Technical Report CMU/SEI-2002-TR-
011, Carnegie Mellon University, Pittsburgh, 2002

[6] CMMISM for Systems Engineering/Software Engineering/Integrated Product and
Process Development/Supplier Sourcing, Version 1.1, Staged Representation
(CMMI-SE/SW/IPPD/SS, V1.1, Staged), Technical Report CMU/SEI-2002-TR-012,
Carnegie Mellon University, Pittsburgh, 2002

[7] Michel Jaring, René L. Krikhaar and Jan Bosch, Visualizing and Classifying Soft-
ware Variability in a Family of Magnetic Resonance Imaging Scanners, Software
Practice and Experience, June 2003.

[8] Frank van der Linden, Software Product families in Europe: The Esaps and Café Pro-
jects, IEEE Software, July/August 2002, pp. 41-49

[9] Frank van der Linden, Jan Bosch, Erik Kamsties, Kari Känsälä, Lech Krzanik, Henk
Obbink, Software Product Family Evaluation, accepted for PFE5 workshop, Novem-
ber 2003.

[10] Northrop, et al. A Framework for Software Product Line Practice Version 4.1,
http://www.sei.cmu.edu/plp/framework.html

[11] M. Paulk, et. al.,. Capability Maturity Model of Software, Version 1.1. Tech Report
CMU/SEI-93-TR24, Carnegie Mellon University, Pittsburgh, 1993

[12] Klaus Schmid, Scoping Product lines, Software Product lines - Proceedings of the
First Software Product Line Conference (SPLC1), Kluwer, August 2000, pp. 513-532

